

 TeamSite

®

 Templating
Developer’s Guide

Release 5.5.1

© 1999-2002 Interwoven, Inc. All rights reserved.

No part of this publication (hardcopy or electronic form) may be reproduced or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written consent of Interwoven. Information in this manual is furnished under license by
Interwoven, Inc. and may only be used in accordance with the terms of the license agreement. If this
software or documentation directs you to copy materials, you must first have permission from the
copyright owner of the materials to avoid violating the law which could result in damages or other
remedies.

Interwoven, TeamSite, OpenDeploy and the Interwoven logo are trademarks of Interwoven, Inc.,
which may be registered in certain jurisdictions. SmartContext, DataDeploy, Content Express,
OpenChannel, OpenSyndicate, MetaTagger, TeamCatalog, TeamXML, TeamXpress, the tagline and
service mark are trademarks of Interwoven, Inc. which may be registered in certain jurisdictions. All
other trademarks are owned by their respective owners.

TeamSite Templating utilizes third party components under the following copyrights with all rights
reserved: Copyright 1999, Apache Software Foundation (www.apache.org); Copyright 1997-2000,
Samizdat Productions. If you are interested in using these components for other purposes, contact the
appropriate vendor.

Interwoven, Inc.

803 Eleventh Ave.

Sunnyvale, CA 94089

http://www.interwoven.com

Printed in the United States of America

Version 5.5.1

Part # 40-00-10-12-00-551-200

Table of Contents

About This Book 7
Manual Organization 7
Notation Conventions 9
Editing Text on Windows NT Systems 10
Notation of iw-home on UNIX and Windows NT Systems 10

Chapter 1: TeamSite Templating Installation 11
Hardware Requirements 11
Operating System Requirements 11
Pre-Installation Validation 12
Installing on Solaris 12
Installing on Windows NT 14
Installing on Client Machines 15

Memory Requirements for TeamSite Templating Java Clients 15
Setting Heap Size 16
Multiple Users on a Single Java TeamSite Templating Client 16

Next Step 16

Chapter 2: Initial Configuration 17
Configuration Overview 17

Concepts and Definitions 18
Process Flow: Creating a New Data Content Record 26
Process Flow: Generating an Output File 28
The Example Directory Structure 30

Configuring the Example Templating Environment 31
Editing available_templates.cfg to Initiate Workflows 33
Modifying the TeamSite iw.cfg File 34

Providing Content Contributor Interface Access 35
Starting TeamSite Templating 36
3

Chapter 3: Setting Up Data Capture Templates 39
User Interface Overview 39
Data Capture Template Overview 40
Example Data Capture Templates 42
Data Capture Example 1 42

Example 1 Data Capture Form 42
Example 1 datacapture.cfg File 45
Explanation of datacapture.cfg File 47
Customizing the Appearance of Java Data Capture Forms 66
Example 1 Data Content Record 68

Data Capture Example 2 70
Example 2 Data Capture Form 70
Example 2 datacapture.cfg File 72

Data Capture Template DTD 76

Chapter 4: Setting Up Presentation Templates 83
Creating Presentation Templates 83

Using a Presentation Template—An Example 87
Interwoven XML Tags 96

Chapter 5: Mapping Users, Templates, and Content Records 97
templating.cfg Overview 97
Example templating.cfg File 98

Diagram Key 101
Setting Previewing Path Variables 103

templating.cfg DTD 105

Chapter 6: Integrating Templating, DataDeploy, and Workflow 107
Integration Overview 108
Integration Steps 108

TeamSite Templating 108
DataDeploy 109
TeamSite Workflow 109
4 TeamSite Templating Developer’s Guide

Appendix A: Using Callouts 111
The Java Callout 111

The datacapture.cfg File 112
Java Source Code 112

The CGI Callout 116
The Data Capture Form 116
The datacapture.cfg.example File 118
The example_datacapture_callout.ipl File 119

Appendix B: Command-Line Tools 129
iwdctacleval 130
iwdtd2sym 132
iwgen 133
iwprop 134
iwpt_compile.ipl 135
iwregen 138
iwxml_validate.ipl 139
upgrade_dct_cfg.ipl 141

Appendix C: Creating DCTs from DTDs 145
Running the CLT on the DTD File 146
The datacapture.cfg File 147

Diagram Key 149
Unsupported DTD Features 150

Appendix D: Internationalization 153
Limitations 154
Japanese EUC-JP Encoding Support 155
Localized Java Templating into Japanese, Traditional Chinese, and Simplified Chinese 157

Index 159
5

6 TeamSite Templating Developer’s Guide

About This Book
®
The TeamSite Templating Developer’s Guide is a guide to installing and configuring TeamSite Templating

and to developing presentation templates and data capture templates. It is primarily intended for
TeamSite Templating developers and for web server administrators and system administrators. Many
of the operations described in this manual require root (UNIX®) or Administrator (Windows NT®)
access to the TeamSite server. If you do not have root or Administrator access to the TeamSite server,
consult your system administrator.

UNIX: Users should be familiar with basic UNIX commands and be able to use an editor such as emacs
or vi.

Windows NT: Users should be familiar with either IIS or Netscape® web servers, and with basic
Windows NT operations such as adding users and modifying ACLs (Access Control Lists).

It is also helpful to be familiar with regular expression syntax. If you are not familiar with regular
expressions, consult a reference manual such as Mastering Regular Expressions, by Jeffrey Friedl.

For information about TeamSite, refer to the TeamSite User’s Guide and the TeamSite Administration Guide.

Manual Organization

This manual contains the following sections and chapters:

• Chapter 1, “TeamSite Templating Installation,” describes how to install TeamSite Templating on
Solaris and Windows NT systems.

• Chapter 2, “Initial Configuration,” describes how to configure the fully functional example
templating environment supplied with TeamSite Templating.

• Chapter 3, “Setting Up Data Capture Templates,” describes how to customize data capture
templates for your site-specific needs.
7

• Chapter 4, “Setting Up Presentation Templates,” describes how to customize presentation
templates for your site-specific needs.

• Chapter 5, “Mapping Users, Templates, and Content Records,” describes how to configure user
access to specific templates and data content records, which templates can interact with which data
content records, and other configurable features of TeamSite Templating.

• Chapter 6, “Integrating Templating, DataDeploy, and Workflow,” describes how to configure
TeamSite Templating to work with DataDeploy and TeamSite workflow.

• Appendix A, “Using Callouts,” describes the cgi-callout and java-callout elements.

• Appendix B, “Command-Line Tools,” describes how users can use TeamSite Templating through
command-line commands.

• Appendix C, “Creating DCTs from DTDs,” describes how to convert existing industry-standard
DTDs into data capture templates for use in TeamSite Templating.
8 TeamSite Templating Developer’s Guide

Notation Conventions

Notation Conventions

This manual uses the following notation conventions:

Convention Definition and Usage

Bold Text that appears in a GUI element (for example, menu items, buttons, or
elements of a dialog box) and command names are shown in bold. For example:

Click Edit File in the Button Bar.

Italics Book titles appear in italics.
Terms are italicized the first time they are introduced.
Valuable information may be italicized for emphasis.

Monospace Commands, command-line output, and file names are in monospace type. For
example:

The iwextattr command-line tool allows you to set and look up
extended attributes on a file.

Monospaced
italic

Monospaced italics are used for command-line variables. For example:
iwckrole role user

This means that you must replace role and user with your values.

Monospaced
bold

Monospaced bold represents information you enter in response to system
prompts. The character that appears before a line of user input represents the
command prompt, and should not be typed. For example:

iwextattr -s project=proj1 //IWSERVER/default/main/dev/
WORKAREA/andre/products/index.html

Monospaced
bold italics

Used to indicate a variable in response to a system prompt.

[] Square brackets surrounding a command-line argument mean that the argument
is optional.

| Vertical bars separating command-line arguments mean that only one of the
arguments can be used.
9

Editing Text on Windows NT Systems

It is recommended that you use WordPad rather than Notepad to edit text on a Windows NT system.
Other text editors may also be used.

Notation of iw-home on UNIX and Windows NT Systems

Notation of iw-home on UNIX and Windows Systems

This manual does not use the UNIX notation (iw-home; note the lack of italics) except when
specifically referring to procedures performed only in UNIX.

This manual uses the Windows version of iw-home notation (italicized iw-home) when discussing
both UNIX and Windows systems. The italics are an Interwoven convention identifying iw-home as
a variable. You should interpret the iw-home notation used in this manual as follows:

• On UNIX systems, iw-home is the literal name of the directory containing the TeamSite program
files.

• On Windows systems, iw-home is the symbolic name of the directory that contains your TeamSite
program files. The default value of iw-home on Windows systems is:

C:\Program Files\Interwoven\TeamSite

The administrator performing the Windows installation may have chosen an installation directory
different from the default.
10 TeamSite Templating Developer’s Guide

Chapter 1

TeamSite Templating
Installation
TeamSite Templating for end users is available in two versions. TeamSite Templating Browser provides a
browser-based user interface; all the required software resides on the TeamSite server. TeamSite
Templating Java provides a Java®-based user interface; it requires software be installed on the client
machine. A more detailed discussion of these end-user versions is provided in Chapter 3, “Setting Up
Data Capture Templates.”

TeamSite must be installed on your server before you can install TeamSite Templating. You must
have the same versions of TeamSite and TeamSite Templating. If TeamSite is not installed, see the
TeamSite Administration Guide for installation instructions. Return to this chapter after TeamSite is
installed.

Hardware Requirements

See the TeamSite Administration Guide for general information on hardware requirements.

TeamSite Templating should be installed on a dual CPU server if you plan to enable data content
record searches.

Installing TeamSite Templating Java requires an additional 60 megabytes (MB) of hard disk space for
the files used by the Java-based interface. On client machines running TeamSite Templating Java, at
least 20 MB of hard disk space are required.

Operating System Requirements

TeamSite Templating is supported on all operating systems that support TeamSite. See the TeamSite
Administration Guide for information about supported operating systems.
11

TeamSite Templating Installation

Pre-Installation Validation

If you are upgrading from TeamSite Templating Classic 4.5 (using a browser-based interface) or from
an earlier TeamSite Templating release, you are encouraged to run your data capture templates (DCTs)
through an XML validator with the datacapture5.0.dtd file before upgrading to TeamSite
Templating 5.0. This is necessary because of changes made to the datacapture5.0.dtd and the
new code that reads the data capture templates. You should also validate your templating.cfg file
with the templating DTD. A utility command-line tool (CLT) called iwxml_validate.ipl is
provided with TeamSite Templating to assist you in validating DCTs (see Appendix B, “Command-Line
Tools”).

The data capture templates contain validation regex using extended regular expression (regex) syntax.
If you have any datacapture.cfg files from previous versions that contain validation regex using
basic regex(5) syntax, run the upgrade_dct_cfg.ipl script on them. This script will convert
regex(5) syntax to extended regex syntax. Refer to Appendix B, “Command-Line Tools” for
information on this script. You should run this utility once, and only once, on each
datacapture.cfg file that currently uses basic regex. If you upgraded your datacapture.cfg
files for TeamSite Templating 4.5, do not attempt to upgrade them again. You cannot convert back to
basic regex once you run this utility.

Installing on Solaris

The TeamSite Templating package for Solaris is available in two forms: a compressed pkgadd package
stream file or a package directory. If you have downloaded the Templating package, it will be in the
compressed package stream form. If you are installing from the CD-ROM, it will be in the package
directory form.

To install the package stream package, perform these steps:

1. Log in as root.

2. If a previous version of TeamSite Templating was installed, issue the command:

pkgrm IWOVtst
12 TeamSite Templating Developer’s Guide

Installing on Solaris

3. Unzip and transfer the package stream package into a temporary location by issuing the following
command (on one line), where temp_dir is a temporary directory with at least 128 MB of free
space:

gunzip < tst.5.5.0.Buildxxxx.pkg.gz | pkgtrans /dev/fd/0 temp_dir
 IWOVtst

4. Install TeamSite Templating by issuing the following command:

pkgadd -d temp_dir IWOVtst

5. Remove the temporary directory:

rm -r temp_dir/IWOVtst

To install the package directory form, perform these steps:

1. Log in as root.

2. Change to the directory containing the IWOVtst directory. If you are installing from CD-ROM,
this would be:

cd /cdrom

3. Install TeamSite Templating by issuing the following command:

pkgadd -d . IWOVtst

Once TeamSite Templating is installed, you must restart the iwproxy daemon and the Interwoven
Servlet Engine:

1. Log in as root.

2. Issue the following command:

iw-home/bin/iwreset -ui

See the TeamSite Administration Guide for more information about restarting the proxy server.

Java Runtime Environment Installation Requirements for TeamSite Templating on Solaris

To run the Java runtime environment, you must first install the Solaris operating system patches. You
can download these patches from the Sun web site at http://www.sun.com.
13

TeamSite Templating Installation

In Solaris environments, TeamSite can only be run on Sparc or UltraSparc platforms. However, a
LaunchPad client is available for the Solaris x86 platform.

Debugging Information for TeamSite Templating Installation on Solaris

If the installer fails to run on a Solaris server, you can display debugging information by setting the
LAX_DEBUG environment to true by entering the following commands at the prompt:

% LAX_DEBUG=true ; export LAX_DEBUG

% sh TSTP.bin

Installing on Windows NT

In Windows NT environments, TeamSite should not be installed on a Primary Domain Controller
(PDC) or a Backup Domain Controller (BDC). Additionally, TeamSite can only be installed on a
Windows NT server that has been added to a valid Windows NT domain.

Note: When installing a self-extracting NT package, the disk drive where the environment variable
TEMP is located must have at least twice as much free space as the package itself in order for
the self-extraction to work.

Perform the following steps to install TeamSite Templating on TeamSite running on a Windows NT
system:

1. Log on to Windows NT with Administrator permissions.

2. Insert the TeamSite Templating CD into the CD drive. Navigate to the top-level directory and dou-
ble click the templating.exe icon. The Interwoven TeamSite Templating Setup screen appears.

3. Click Next. A dialog box appears, prompting for the destination of the TeamSite Templating admin-
istrative files. Selecting the default location is recommended; if you specify a new location, it must
not be the iw-home directory.

4. Click Next. File names are displayed while the TeamSite Templating administrative files are loaded.
A dialog box appears telling you to refer to the TeamSite Templating Developer’s Guide (this manual).
14 TeamSite Templating Developer’s Guide

Installing on Client Machines
5. Click OK. The TeamSite Templating directory structure shown on page 23 is installed in iw-home.

6. Restart the proxy server:

– Select Settings > Control Panel from the Start menu.

– Open the Services control panel.

– Select Interwoven Proxy from the list of services.

– Click Stop and wait for service to terminate.

– Click Start. See the TeamSite Administration Guide for more information about restarting the proxy
server.

7. Restart the Interwoven Servlet Engine.

Installing on Client Machines

TeamSite Templating Java requires the installation of software on client machines; at least 20 MB of
hard disk space are required.

After TeamSite Templating is installed and configured on the server, TeamSite Templating Java is
available for users to install on their machines. When content contributors select File > New Data
Record, they are prompted to install the client-side software. Refer to the TeamSite Templating User’s
Guide for the procedures.

TeamSite Templating Browser does not require the installation of software on client machines, except
when VisualFormat is used for formatting text areas. Refer to the TeamSite Templating User’s Guide.

Memory Requirements for TeamSite Templating Java Clients

TeamSite Templating client machines running the Java user interface must have at least 64 MB of
physical memory.
15

TeamSite Templating Installation
Setting Heap Size

If you are using the Java-based interface, the heap size on each client system should be set to one half
the physical memory on the machine. To modify the heap size:

1. Stop TeamSite Templating on the client machine.

2. Edit the tst.lax file (located in the TeamSite Templating installation directory) to set the heap
size. An example of setting the heap size to 64 MB on a 128 MB machine is:

lax.nl.java.option.java.heap.size.max=64000000

3. Restart TeamSite Templating by selecting a command to create or edit a data content record.

Multiple Users on a Single Java TeamSite Templating Client

The Java TeamSite Templating client supports multiple users. To have multiple users on a single client
machine, each user needs a TeamSite Templating client installation. When installing the TeamSite
Templating client, change the location of the files during the second installation to avoid overwriting
the first installation.

You also need to make the following changes for each client:

In the tst.lax file, set

iw.install.port=unique_port_number

In the com_interwoven_templating100_dcredit.properties file, change the value for
port to the same port number that was set in the tst.lax file as follows:

port=unique_port_number

Next Step

After you install TeamSite Templating, you are ready to configure the example templating environment
as described in the Chapter 2, “Initial Configuration.”
16 TeamSite Templating Developer’s Guide

Chapter 2

Initial Configuration

After TeamSite Templating is installed, perform the initial configuration described in this chapter.
This initial configuration provides a fully functional TeamSite Templating example environment to
verify that the TeamSite Templating installation was successful. You can also use the example
environment to become familiar with TeamSite Templating features. After you are familiar with the
example environment, you can customize it to create your own customized environment as described
later in this manual. The configuration activities described in this chapter should be performed by a
system administrator or Interwoven consultant.

This chapter begins with an overview of TeamSite Templating configuration, followed by the initial
setup activities that will create the example templating environment.

Configuration Overview

TeamSite Templating provides a highly configurable way to:

• Capture, edit, and store data input from content contributors.

• Define the appearance of displayed data.

• Integrate captured data with other Interwoven features and products such as TeamSite Workflow
and DataDeploy.

 The TeamSite Templating mechanism for capturing data content from content contributors is
separate from the mechanism for defining the appearance of the content when it is displayed. This
architecture allows for unlimited reuse of data after the data is captured and stored; it also lets you
define different appearances and behaviors for the same data content based on how, when, where, or
to whom the data is displayed. You can also use Perl code to extract content from other sources such
as relational databases.
17

Initial Configuration
Configuring TeamSite Templating consists of:

• Copying a set of example configuration files and directories supplied with TeamSite Templating into
specific locations in your system’s directory structure. This sets up a functional example
environment that lets you confirm that the TeamSite Templating installation was successful and
provides a default environment in which to familiarize yourself with TeamSite Templating. See
“Configuring the Example Templating Environment” on page 31 for more information.

• Customizing the templating environment for your specific site by renaming or creating new
configuration files (see Chapter 3, “Setting Up Data Capture Templates”) and presentation
templates (see Chapter 4, “Setting Up Presentation Templates”).

Concepts and Definitions

TeamSite Templating Model

TeamSite Templating’s architecture allows data capture and data presentation to be configured,
executed, and managed separately. The following diagram and sections provide a high-level overview
of this architecture.
18 TeamSite Templating Developer’s Guide

Configuration Overview
TeamSite Templating Overview

Data Content Records

Presentation Templates

Generated Files

TeamSite GUI

Page
Generation
Subsystem

RDBMS

Production
Web
Server

Data
Capture

Subsystem

Data Capture
Templates

TeamSite Client

TeamSite Server

External
19

Initial Configuration
Data Capture
Content contributors working through the TeamSite GUI (either WebDesk or WebDesk Pro) have
access to the data capture subsystem. This subsystem lets content contributors select and work through
forms defined by data capture templates to create or edit data content records, which by default are stored
in the TeamSite file system. Data is stored as XML and used later to fill in presentation templates to
generate multiple renderings of the content, including for the web and wireless devices. After data
content records are created, they can be displayed using presentation templates or optionally deployed
to a database using DataDeploy.

The data capture subsystem can be used in either of two interfaces, TeamSite Templating Browser and
TeamSite Templating Java.

The interface is determined either for your site or by individual users. Refer to Chapter 3, “Setting Up
Data Capture Templates,” for details on configuring the data capture subsystem. Refer to the TeamSite
Templating User’s Guide for information on using these two interfaces to TeamSite Templating.

Data Presentation
After data is captured and stored as data content records, users working through WebDesk Pro,
WebDesk, or the command line can access the page generation subsystem to combine a data content
record with a presentation template. The end result is a generated output file that displays the data
content in a way defined by the presentation template. In addition, users can generate an output file
that obtains data from multiple data content records and from queries to databases. The generated
output file can optionally be deployed to a production web server using OpenDeploy.

Definitions

The following sections define key TeamSite Templating terms.

Data Capture Template
A data capture template is an XML file named datacapture.cfg that defines the form used to capture
data content from content contributors. A data capture template is associated with a category and
type. The category and type define what type of data is required by the data capture template. The data
that a content contributor enters in a data capture template is saved on the TeamSite file system as an
XML file in the form of a data content record. See “Data Storage Hierarchy” on page 23 for
information about where data capture templates reside.
20 TeamSite Templating Developer’s Guide

Configuration Overview
Presentation Template
A presentation template is an XML file that defines how captured data will appear when displayed. A
presentation template is populated with a data content record that was captured earlier (through a data
capture template) or from queries to databases or by other means such as through the TeamSite
TeamCatalog product. You can configure TeamSite Templating to populate any presentation template
with any data content record plus any additional information as required from a relational database.
You can use presentation templates with component templates. A component template is a nested
presentation template that is part of another presentation template. You can also use a single data
content record to populate more than one presentation template, resulting in a different look and feel
for the same data record. See “Data Storage Hierarchy” on page 23 for information about where
presentation templates reside.

Data Content Record

A data content record is an XML file containing formatting information interspersed with data captured
from a content contributor or through other means. A data content record is named by the content
contributor when it is saved.

Data Capture Subsystem

The data capture subsystem is a set of Java applications that perform the following functions:

• Read the datacapture.cfg and templating.cfg configuration files to determine what
information should be presented to a content contributor using the TeamSite GUI.

• Interpret content contributor input.

• Save content contributor input as formatted data content records.

Page Generation Subsystem

The page generation subsystem is a set of programs and libraries that perform the following functions:

• Read the presentation template and templating.cfg configuration files to determine what
information should be presented to a content contributor using the TeamSite GUI.

• Interpret content contributor input.

• Combine data content records and presentation templates to produce generated output files.
21

Initial Configuration
The presentation template compiler (iwpt_compile.ipl) is the primary component of the page
generation subsystem. The compiler is a low-level command-line tool that invokes the template parser
to create output files. The presentation template compiler is described in more detail in Appendix B,
“Command-Line Tools.”

Configuration Files

TeamSite Templating uses the following configuration files:

• templating.cfg: The main TeamSite Templating configuration file. It is an XML file that resides
outside of the TeamSite file system in iw-home/local/config and specifies:

– Which data categories and types are available for use with TeamSite Templating.

– Which presentation templates can generate HTML files on which TeamSite branches or
directories.

– Which presentation templates can be used with a specific data type.

– Which users or roles are allowed to create or edit data content records for a specific data type.

– The location of the presentation template used for previewing generated HTML files.

See Chapter 5, “Mapping Users, Templates, and Content Records,” for details about customizing
templating.cfg.

• datacapture.cfg: An XML file that defines a data capture template and defines the data capture
form for a specific data type. It defines the data type itself (such as what information the data type
will contain and parameters that define what type of data is legal in any input field). A
datacapture.cfg file also specifies the look and feel of the data capture form displayed in the
TeamSite GUI. Each data type has a datacapture.cfg file. A TeamSite Templating environment
can contain any number of datacapture.cfg files, differentiated by where they reside in the
directory structure. See “Data Storage Hierarchy” on page 23 for information about where
datacapture.cfg files reside. See Chapter 3, “Setting Up Data Capture Templates,” for
information about customizing datacapture.cfg.

• available_templates.cfg: Identifies workflows to be initiated when certain Templating
events occur.
22 TeamSite Templating Developer’s Guide

Configuration Overview
Data Storage Hierarchy

TeamSite Templating uses a data storage hierarchy based on data categories and types. The directory
structure supporting this hierarchy resides in the workarea for each TeamSite Templating user. The
directory structure follows. Items in boxes are directories; items not in boxes are files.

TeamSite Templating Directory Structure

The templatedata directory is at the highest level in the hierarchy.

Data categories are at the next level in the hierarchy and contain one or more data types. For example,
the data category beverages could contain separate directories for the data types tea, coffee,
milk, and so on. In addition to residing in this directory structure, data categories and types must also
be listed in the templating.cfg configuration file to be made available to TeamSite Templating.
See Chapter 5, “Mapping Users, Templates, and Content Records,” for more information. The

Workarea

templatedata

data_category_1

data_type_1

data_category_2

data_type_2

. . .

. . .

datacapture.cfg data presentation

content_record_1

content_record_2
. . .

pres_template_1.tpl
pres_template_2.tpl
. . .

componentstutorials

output
23

Initial Configuration
components directory that stores component templates and the tutorials directory are optional
subdirectories of templatedata.

Data type directories each contain a datacapture.cfg file and the subdirectories data and
presentation. Details for the entire hierarchy are as follows:

File or Directory Description

templatedata Top-level directory containing subdirectories for data categories,
types, and all associated configuration files. Resides in the
workarea for each user who uses TeamSite Templating. Can be
renamed and the iw.cfg file modified.

data_category_1 The first major categorization for data types on a specific branch.
Named and defined in templating.cfg. For example:
/templatedata/beverages

data_type_1 The first subcategory of data in data_category_1. Named and
defined in templating.cfg. For example:
/templatedata/beverages/tea. Each data type in a given
data category has its own subdirectory.

datacapture.cfg The XML configuration file that defines a data capture template
and drives data capture for a specific data type. It defines the data
type itself (such as what information the data type will contain
and parameters for what type of data is legal in any input field).
Specifies the look and feel of the data capture form displayed in
the TeamSite Templating GUI through which a content
contributor enters data. Each data type must have exactly one
datacapture.cfg file.

data The directory containing all captured data content records for a
given data type. If necessary, you can define and create a directory
tree underneath the data directory. A data directory can
contain zero or more data content records.

content_record_1 The first data content record for a given data type. Each data
content record is an XML file containing formatting information
interspersed with data captured from a content contributor using
TeamSite Templating. A data content record is named by the
content contributor during data entry. For example:
/templatedata/beverages/tea/data/november_order
24 TeamSite Templating Developer’s Guide

Configuration Overview
presentation The directory containing all presentation templates for a given
data type. The presentation directory must contain one or
more presentation templates.

pres_template_1.tpl The first presentation template for a given data type. A data type
can have any number of presentation templates. A single
presentation template is populated by data from one or several
data content records and can produce one or several files. A
presentation template can have a name of your choice. For
example:
/templatedata/beverages/tea/presentation/
monthly_order.tpl

components The directory where all component templates are stored. This
directory is not required or may be in another location.

tutorials Examples showing the use of iw_xml tags. This directory is not
required or may be in another location.

data_type_2 A second subcategory of data in data_category_1. For
example:
/templatedata/beverages/coffee

data_category_2 A second major categorization for data on a specific branch. For
example:
/templatedata/food

File or Directory Description
25

Initial Configuration
Process Flow: Creating a New Data Content Record

The following diagram shows what takes place when a content contributor creates a new data content
record. Sections following the diagram explain each diagram step and component in detail.

Process Flow Overview: Creating a New Data Content Record

TeamSite File
System

• datacapture.cfg
• Data content

records

Browser

• Content
contributor selects
New Record in
WebDesk (Pro)

• Content
contributor fills in
data capture
form(s)

Data Capture
Subsystem

• Reads
templating.cfg

• Reads
datacapture.cfg

• Displays menu
choices in TeamSite
Templating

• Creates and saves
data content
records

templating.cfg

• Overall
templating rules

• Template-specific
rules

Server-Side
Workflow
Subsystem

• Starts successor
task

5

1

4 2

6

9

3

7

8
26 TeamSite Templating Developer’s Guide

Configuration Overview
1. A content contributor clicks File > New Record in the WebDesk or File > New Data Record in
WebDesk Pro.

2. The TeamSite Templating data capture subsystem reads the templating.cfg file to determine
which data types should be displayed as choices for the content contributor. The criteria used for
this determination are specified in templating.cfg and could include the content contributor’s
login ID, role, or current TeamSite area or branch. The data type must also exist as a directory in
the content contributor’s workarea.

3. The data capture subsystem displays the appropriate list of data categories and data types.

4. The content contributor selects a data type. That information is sent back to the data capture sub-
system.

5. The data capture subsystem reads the datacapture.cfg file for the data type chosen by the con-
tent contributor.

6. The data capture subsystem displays the data capture form (as defined by datacapture.cfg).

7. The content contributor enters data in the data capture form and selects File > Save As to name
and save the data content record. The new data is sent to the data capture subsystem.

8. Using the data provided by the content contributor, the data capture subsystem writes a data con-
tent record to the TeamSite file system. Note: The content contributor could also have chosen to
preview the output file. In that situation, the data capture subsystem reads templating.cfg to
determine which presentation templates are available for that data type. The content contributor
selects a presentation template and the data capture subsystem displays a preview version of the
data.

9. If creating the data content record is a task associated with a TeamSite Workflow job, the user
indicates the task has been completed and the TeamSite Workflow subsystem starts the successor
task.
27

Initial Configuration
Process Flow: Generating an Output File

The following diagram shows the actions that take place when a content contributor generates a new
output file by populating a presentation template with a previously captured data content record.
Sections following the diagram explain each diagram step and component in detail.

Process Flow Overview: Generating an Output File Using a Data Content Record and a Presentation Template

TeamSite File
System

• Presentation
templates

• Data content
records

• Generated output
files

Browser

• Content
contributor selects
Generate in
TeamSite
Templating

• Content
contributor selects
a data content
record and
presentation
template

Page Generation
Subsystem

• Reads templating.cfg
• Reads presentation

template lists
• Displays menu

choices in TeamSite
Templating

• Combines data
content records and
presentation
templates

templating.cfg

• Overall
templating rules

• Template-specific
rules

Server-Side
Workflow
Subsystem

• Starts successor
task

3

1

5

2

7

4

6
28 TeamSite Templating Developer’s Guide

Configuration Overview
1. A content contributor clicks File > Generate Page from the Java interface or clicks Generate
from the browser interface.

2. The TeamSite Templating page generation subsystem reads the templating.cfg file to deter-
mine which data content records for the selected data type should be displayed as choices for the
content contributor. The criteria used for this determination are specified in templating.cfg
and can include the content contributor’s login ID, role, or current TeamSite area or branch. The
user selects a data content record.

3. The page generation subsystem reads the /templatedata/data_category/data_type/
presentation directory to determine which presentation templates are associated with the
selected data type.

4. The page generation subsystem lists the appropriate presentation templates in the Generate Out-
put window. If only one presentation template is available, the output file displays without the user
having to make a selection.

5. The content contributor selects a presentation template.

6. The page generation subsystem generates an output file by entering data from the chosen data con-
tent record and any other applicable sources into the chosen presentation template.

7. If creating the generated output file is a task associated with a TeamSite Workflow job, the user indi-
cates that task has been completed and the TeamSite workflow subsystem starts the successor task.
29

Initial Configuration
The Example Directory Structure

The following directory structure is created when you install the TeamSite Templating example:

TeamSite Templating Example Directory Structure

README

README

README

templating.cfg.example

examples

Templating

config

templatedata

internet
auction

README
data
datacapture.cfg
presentation

auction.tpl
book

careers

medical

periodic

pr

intranet

deptinfo

workflow
README

author_submit_dcr-0.ipl

author_submit_dcr-3.ipl

author_submit_dcr.wft

iw-home

...

...

...

...

...

...

Data Category: internet

Data Category: intranet

Data Types:
• auction

• book

• careers

• medical

• periodic

• pr

• yacht

weather
...

Data Types:
• deptinfo

• weather

}
custom-dtd-examples

PressRelease

Data Category: custom-dtd-examples

Data Type: PressRelease

yacht
...
30 TeamSite Templating Developer’s Guide

Configuring the Example Templating Environment
The major components of the iw-home/examples/Templating directory structure are:

• A top-level README file.

• A config directory containing a README file and an example templating.cfg file.

• A templatedata directory containing a README file and three data category directories,
internet, intranet, and custom-dtd-examples. The internet directory contains several
data type directories (such as auction, book, and pr). Each data type directory contains a
datacapture.cfg file, a README file, and the directories data and presentation. The
presentation directory for each data type contains at least one presentation template file that
generates an output file based on the data content records for that data type. Some data types have
multiple presentation templates, in which case any presentation template can be used for output
file generation. The custom-dtd-examples directory contains an example using the DTD
conversion procedures.

• A workflow directory containing a README file and all the files necessary to create the workflow
job that deploys data content records using DataDeploy. The workflow template
author_submit_dcr.wft defines the workflow job. The .ipl files define external tasks that
are components of the job. The workflow job defined by these files executes automatically when an
author creates and then submits a data content record to a staging area.

Configuring the Example Templating Environment

The following sections describe how to configure TeamSite Templating to provide the example
templating environment. After the initial setup is complete, you can:

• Use the example templating environment to become familiar with the TeamSite Templating end-
user features as described in the TeamSite Templating User’s Guide.

• Customize the example templating environment as described in the remainder of this manual to
create your site-specific configuration.
31

Initial Configuration
Perform the following steps to set up the example templating environment. You must copy most of
these files and directories to locations that are specific to your site.

1. Decide which workarea you will use for the initial TeamSite Templating setup. Ideally, this workarea
should be on a temporary test branch where you can submit and publish without affecting the rest
of your TeamSite installation. After TeamSite Templating is configured in the workarea on this test
branch, you can copy the workarea to a permanent branch pertaining to your web site. You can
then submit the workarea to the staging area and use Get Latest to propagate the setup to other
workareas on the branch.

2. Read each directory’s README file for details about directory contents and last-minute information
that might not be documented elsewhere.

3. Copy the following to the specified location, ensuring that all users have read and write permission
for each file:

4. Edit the available_templates.cfg file. See “Editing available_templates.cfg to Initiate
Workflows” on page 33.

After you perform these tasks, the example templating environment is fully functional. Workflow
files that allow authors to submit data content records were installed in the applicable directories
during the TeamSite Templating installation. You can use the example templating environment to
create or edit data content records, generate HTML files by combining a data content record with a
presentation template, and deploy a data content record’s extended attributes to a database using
TeamSite workflow and DataDeploy. See Chapter 6, “Integrating Templating, DataDeploy, and
Workflow,” for more information about integration with workflow and DataDeploy.

Copy: To:

iw-home/examples/Templating/
templatedata

The workarea determined in Step 1. Copy the entire
templatedata directory tree, including the
templatedata directory itself. Do not change any
directory or file names. The end result should be
workarea_name/templatedata/... as shown on
page 23.
32 TeamSite Templating Developer’s Guide

Configuring the Example Templating Environment
Editing available_templates.cfg to Initiate Workflows

The available_templates.cfg file contains a series of <template_file> elements that
specify whether a particular event will be handled by a workflow. Use this file to integrate workflow
with templating. You only need to configure available_templates.cfg if you want to prompt
the user to start or continue with a workflow when a particular event (such as a submit) occurs. Refer
to the TeamSite Workflow Developer’s Guide for details on the syntax for the
available_templates.cfg file.

To configure iw-home/local/config/wft/available_templates.cfg, you must ensure
that it contains a <template_file> section for each workflow. The following example shows
setting up for the Author Submit DCR Workflow.

<available_templates>

 <template_file name='Author Submit DCR Workflow'

 path='default/author_submit_dcr.wft'>

 <command_list>

 <command value='tt_data' />

 <command value='tt_deletedcr' />

 <command value='submit' />

 <command value='all' include='no' />

 </command_list>

 <role_list>

 <role value='author' include='yes' allusers='yes'/>

 <role value='editor' include='yes' allusers='yes'/>

 <role value='all' include='no' />

 </role_list>

 </template_file>

This <template_file> section says that when authors submit a data content record, they will be
prompted to initiate a workflow job using the author_submit_dcr.wft workflow. If someone
signed on in a role other than author submits a data content record, the workflow will not be initiated.
If multiple workflows are available for an action, the author is prompted to select a workflow.
33

Initial Configuration
Modifying the TeamSite iw.cfg File

This section describes some options that may need to be set in the TeamSite /etc/iw.cfg file.

Identifying the Templating Directory

To change the directory in your workareas where templating content will reside, modify the
/etc/iw.cfg file. The default directory is templatedata.

[teamsite_templating]

data_root=directory

Identifying the Templating Interface
By default, TeamSite Templating uses the browser-based interface for displaying the data capture form.
If you to enable the Java-based interface for use at your site, include the following line in the
/etc/iw.cfg file. If this option is set to true, users signed on as Editors, Masters, or Administrators
may use WebDesk Pro to specify whether they want to use the browser-based or Java-based interface
by selecting View >Change Templating UI.

[teamsite_templating]

use_java_ui=true

Removing the Change Templating UI Menu Item

You may disable the View >Change Templating UI menu item by including the following
information in the /etc/iw.cfg file.

[ui_remove_menu_items]

changeTmplUI="roleslist"

The roleslist variable is a comma-separated list of roles for whom the menu item should be
disabled (such as master, editor).
34 TeamSite Templating Developer’s Guide

Providing Content Contributor Interface Access
Adding DCR Search to the View Menu

If the DataDeploy Database Auto Synchronization has been set up, the data content record search
feature is available. Refer to the DataDeploy Administration Guide for information on DAS.Uncomment
the following line in /etc/iw.cfg to add the Search Data Records menu item to the TeamSite
View menu.

[iwcgi]

#custom_menu_item_searchdcr="View", "Search Data Records",

"iwsearchdcr.cgi", "all","scrollbars=yes,resizable=yes,

width=640,height=545", "", "500"

Refer to the TeamSite Administration Guide for information on metadata capture and search.

Specifying Search Paths

If the Search Data Records custom menu item is made available to users, you can specify the paths
that can be searched for data content records. If no templating_path_regex statements are
specified, all paths are valid. Add a templating_path_regex statement in one of the formats
shown (the first example is for UNIX platforms; the second example is for Windows platforms).
Multiple templating_path_regex statements can be specified.

[valid_search_paths]

templating_path_regex=^/iwmnt/default/main/www/WORKAREA/w1/

templating_path_regex=^Y:\default\main\www\WORKAREA\w1\

If a user attempts a search on an invalid path, a message displays when the user selects Search Data
Records.

Providing Content Contributor Interface Access

The Content Contributor interface lets Authors access TeamSite Templating directly from a published
intranet page or HTML-formatted email by clicking one or more URL links to the source file. If a user
clicks on one of these links and is not already logged in, the TeamSite login screen appears.

If a user has TeamSite Templating installed, you can insert a link to open a data capture record for the
specified category and type in the specified workarea. Templating opens in either the Java or browser
interface, depending on the system-wide configuration and user preference. Use the syntax:
35

Initial Configuration
http://server/iw/webdesk/newdcr?area_path=pathname&iw_tdt=category_type

where server is the name of the TeamSite server, pathname is the area path (such as
/default/main/br/WORKAREA/wa), and category_type is the Templating data category and
type (such as internet/yacht).

To insert a link to edit a data content record or an output page, use the syntax:

http://server/iw/webdesk/edit?vpath=filename

This link can be hard-coded anywhere you need a link to TeamSite Templating, such as in a Web site,
a presentation template, or an HTML-formatted email. See the TeamSite Administration Guide for
information on other types of links. You can also use the iwov_webdesk_url tag to include links in
presentation templates. Refer to the Perl doc for this tag for details.

Starting TeamSite Templating

Perform the following steps to start TeamSite Templating after you have configured the example
templating environment:

1. Log out of TeamSite.

2. Log back on to TeamSite.

3. Select File > New Data Record.

If a user is configured to use TeamSite Templating Java, a prompt displays to install the client
module for the Java interface.

The example templating environment should now be accessible through one of the TeamSite
Templating interfaces as described the TeamSite Templating User’s Guide.

TeamSite Templating can be accessed in the following ways:

• From WebDesk Pro File menu.

• From WebDesk Files tab.

• From the Smart Content Editing tab.
36 TeamSite Templating Developer’s Guide

Starting TeamSite Templating
• From a workflow task (Tasks tab in WebDesk or ToDo list in WebDesk Pro).

• Through the Content Contributor Interface (access Templating by selecting a URL).
37

Initial Configuration
38 TeamSite Templating Developer’s Guide

Chapter 3

Setting Up Data Capture
Templates
This chapter describes how to edit and create data capture templates. It is assumed that the example
templating environment’s directory structure exists on your system and that you now intend to
customize this environment by creating new data capture templates. See Chapter 2, “Initial
Configuration,” for more information about the example templating environment’s directory
structure.

This chapter contains:

• An overview of the user interface and considerations for design.

• An overview of data capture templates.

• Pointers to sample data capture template files that are included with this release of TeamSite
Templating.

• A description of the datacapture.cfg elements and attributes.

• Examples of data capture forms and the data capture template files that generate the forms.

• A sample data content record.

• The data capture template document type definition (DTD).

You can also create data capture template files from industry-standard XML DTDs. Refer to
Appendix C, “Creating DCTs from DTDs.”

User Interface Overview

Two user interfaces are available for TeamSite Templating.

• TeamSite Templating Browser uses a browser-based interface.
39

Setting Up Data Capture Templates
• TeamSite Templating Java uses a Java application based interface. It requires that the Java application
be installed on the client machine (see the TeamSite Templating User’s Guide for installation
instructions).

Users logged into TeamSite WebDesk Pro can specify the type of interface they want to use by
selecting View > Change Templating UI. The selection remains in effect until it is changed.

Systems administrators can control the availability of interfaces and make changes to a selected user
interface by:

• Enabling or disabling the Java-based interface in iw.cfg (page 34).

• Disabling the View > Change Templating UI option for specific roles or for all roles (page 34).

• Changing the interface in the entity database using the iwprop CLT (see page 134). The entity
database stores user credentials as properties for each user.

The primary differences in the two interfaces from the user’s viewpoint are in the areas of using
replicants and text formatting (see the TeamSite Templating User’s Guide). The primary differences from
the template developer’s viewpoint are the method of creating callouts (Appendix A, “Using
Callouts”), setting up text formatting options (see page 59), and the ability to configure the
appearance of the data capture forms (see page 66).

Data Capture Template Overview

Data capture templates are XML files named datacapture.cfg that reside in the locations
described in “Data Storage Hierarchy” on page 23. Each data type is defined with a unique data capture
template file (datacapture.cfg). Each datacapture.cfg file contains the following
components:

• Rule set: A set of configuration instructions that controls the appearance and behavior of the data
capture forms displayed in the TeamSite GUI. A TeamSite Templating datacapture.cfg file must
contain exactly one rule set. Each rule set contains one or more of the elements identified by the
%items parameter entity reference (currently item, itemref, or container).
40 TeamSite Templating Developer’s Guide

Data Capture Template Overview
• Item: Each item is a single set of data that is to be captured from a content contributor. A rule set
must contain at least one item. Items can be nested within other items. If a rule set contains more
than one item, item names must be unique within any given nesting level. See page 48 for more
information. Each item contains one or more instances.

• Instance: Each instance defines how to capture data for an item. An instance also defines an ACL that
determines which if any instance a specific user is allowed to use to enter the data. See page 50 for
more information.

The following list describes the characteristics of data capture forms that you can configure in a
datacapture.cfg file. Minor customization of the Java-based data capture forms can be made in
dccustomization.xml (page 66).

• The number and appearance of data capture fields in a data capture form.

• The content and appearance of labels for each data capture field in a data capture form.

• How data will be captured, such as through a check box, radio button, or text field.

• Characteristics of the data entered in each section’s fields, including text style, maximum length,
and whether the data is text or image.

• Editing capabilities for text areas.

• Which fields, if any, must be filled in before the data entry form can be saved.

• Which fields can be filled in by a specific content contributor.

• Which data entry fields can be displayed multiple times in the same data capture form, and how
many times the fields can be displayed.

When a content contributor finishes filling in a data capture form and selects File > Save, the data
capture subsystem combines the newly entered data with the XML rules defined in the
datacapture.cfg rule sets. The end result is a data content record that is an XML file that
associates field names from the data capture form with the values that were entered in those fields by
the content contributor.

Data capture templates should validate against the datacapture5.0.dtd file, which can be found
at iw-home/local/config/datacapture5.0.dtd. However, a validated template is not
necessarily a valid file. For example, the <callout> element has attributes that are specific or
required for one type of callout but not for another.
41

Setting Up Data Capture Templates
Example Data Capture Templates

TeamSite Templating ships with an extensive set of example data capture templates. See “Configuring
the Example Templating Environment” on page 31 for descriptions and locations. Two of these
templates are described in the remainder of this chapter.

Data Capture Example 1

The following sections show a hypothetical Press Release data capture form, the internet/pr/
datacapture.cfg file that generates it, and the data content record that is created when the form is
saved.

Example 1 Data Capture Form

The following hypothetical Press Release data capture form is included in the TeamSite Templating
distribution and is available for use after you configure the example templating environment.
42 TeamSite Templating Developer’s Guide

Data Capture Example 1
Press Release Data Capture Form (without data); Displayed using TeamSite Templating Java
43

Setting Up Data Capture Templates
Press Release Data Capture Form (without data); Displayed using TeamSite Templating Browser
44 TeamSite Templating Developer’s Guide

Data Capture Example 1
Example 1 datacapture.cfg File

The datacapture.cfg file that generates this Press Release data capture form is shown below. As
with all datacapture.cfg files, it consists of a rule set, items, and instances. See “Explanation of
datacapture.cfg File” on page 47 for an explanation of each referenced item. For details about
additional datacapture.cfg features not illustrated by this example, see the DTD starting on
page 76. An additional sample file specific to TeamSite metadata capture is located in the TeamSite
Administration Guide.While the syntax for the metadata capture version of datacapture.cfg differs
slightly from the TeamSite Templating version, it is similar enough to provide a useful detailed
example; refer to that example in addition to the following one.

<?xml version="1.0" encoding = "UTF-8"? standalone="no"?>

<!DOCTYPE datacapture SYSTEM "datacapture5.0.dtd">

<data-capture-requirements type="content" name="pr">

<!-- data-capture-requirements elements contain area elements -->

<ruleset name="Press Release">

<description>

Enter Press Release information.

</description>

 <!-- file elements contain item elements -->

<item name="Publish Date">

<description>Date format is YYYY-MM-DD</description>

<database data-type="DATE" data-format="yyyy-MM-dd" />

<text required="t" maxlength="10"

validation-regex="^[0-9][0-9][0-9][0-9]-[0-1]

 [0-9]-[0-3][0-9]$" />

</item>

<item name="Headline">

<database data-type="VARCHAR(100)" />

<text required="t" size="50" maxlength="100"

</item>

Rule Set (“Press Release”)
Description for the entire data
capture template

Item (“Publish
Date”) with
description for
item and
database
elements
Instance (text)
with validation
regex

Item (“Headline”)
Instance (text)

DCT Identifier
45

Setting Up Data Capture Templates
<item name="Secondary Headline">

<database searchable="f" data-type="VARCHAR(200)" />

<text size="50" maxlength="200" />

</item>

<item name="Introductory Paragraph">

 <database deploy-column="f" />

<textarea rows="15" cols="64"

 external-editor="visualformat" />

</textarea>

</item>

<item name="Story">

<database deploy-column="f" />

<replicant max="4">

<item name="Subheading">

<text size="50" maxlength="200" />

</item>

<item name="Section Paragraphs">

<replicant max="4">

<item name="Paragraphs">

<textarea rows="15" cols="64"

external-editor=

"visualformat" />

</item>

</replicant>

</item>

</replicant>

</item>

<item name="Author">

<description>Enter the name of the author

of this article.</description>

<database data-type="VARCHAR(40)" />

<text size="50" maxlength="40" />

</item>

Item (“Introductory Paragraph”)
Instance (textarea with external
editor for formatting)

Item (“Story”)
Instance (replicant)
Nested Item (“Subheading”)
Nested Instance (text)

Nested Item (“Section Paragraphs”)

Nested Instance (replicant)
Nested Item (“Paragraphs”)

Nested Instance (textarea with
VisualFormat editor specified)

Item (“Secondary headline”)
Instance (text)

Item (“Author”)
Instance (text)
46 TeamSite Templating Developer’s Guide

Data Capture Example 1
Explanation of datacapture.cfg File

DCT Identifier

The <data-capture-requirements> element lets you assign a unique identifier for each data
capture template. Exactly one <data-capture-requirements> element is required in all
datacapture.cfg files. The name attribute within a <data-capture-requirements> element
is optional. The type attribute values—content, metadata, and workflow—let you further
describe the type of data that will be captured by the template. For data capture templates, content
should be specified. The <dtd-system-identifier> is a URI indicating the DTD where the
<data-capture-requirements> were derived. The value of this attribute is used as the system

<item name="EMail">

<description>Enter your email address.

</description>

<database data-type="VARCHAR(60)" />

<text maxlength="60" />

</item>

<item name="Languages">

<description>Select the language of this

 article.</description>

<database data-type="VARCHAR(10)" />

<radio>

<option label="English" value="English"/>

<option label="German" value="German" />

<option label="French" value="French" />

<option label="Japanese" value="Japanese" />

<option label="Chinese" value="Chinese"/>

<option label="Spanish" value="Spanish"/>

<option label="Italian" value="Italian"/>

</radio>

</item>

</ruleset>

</data-capture-requirements>

Item (“EMail”)
Instance (text)

Item (“Languages ”
Instance (radio)

Subelements
(option)}
47

Setting Up Data Capture Templates
identifier of the document type declaration when a data content record type is defined as xml in the
templating.cfg file. The information in a <data-capture-requirements> element is for
reference only. None of the information in this element is stored in the data content record that is
created when datacapture.cfg is processed by the data capture subsystem.

Rule Set

The <ruleset> element contains the items that make up the rule set that defines the appearance and
behavior of the data capture form. A datacapture.cfg file must contain exactly one <ruleset>
element. The name attribute within a <ruleset> element is also required. The value of the name
attribute appears in the TeamSite GUI as the name of the data capture form (Press Release in this
example).

Optional subelements are <label>, <description>, and (%items;). The <label> subelement
is used to provide a label on the data capture form. The parameter entity reference (%items;) is
<item>, <itemref>, or <container>. An <itemref> is a reference to an item in the
<symbol-table>. Wherever an <itemref> is encountered in the data capture template, the data
capture engine replaces it with the appropriate <symbol> from the <symbol-table> (see
Appendix C, “Creating DCTs from DTDs”). This is done dynamically on-demand; for example, if
there is an <itemref> nested inside an or container, it does not get processed until the user gets to
it in the GUI. A <container> is a non-repeating, named set of data capture items. A <container>
may appear anywhere in a data capture template that an <item> element may appear. A container is
conceptually similar to an item with a replicant of min = 1 and max = 1, but it is more efficient. A
<container> that represents a set of the subelements of an XML element type will contain an
<itemref> reference for each subelement type it refers to.

Description

 The optional <description> subelement inserts a description in the data capture form. A
<description> subelement can reside anywhere inside the <ruleset> element as a child element
of <ruleset>.

Item

The <item> element assigns a name of your choice to an item and contains the instances and other
nested items that specify how to capture data for the item.It also includes information on
rowcontinue and colspan. Use rowcontinue to indicate the NEXT item will be placed to the
48 TeamSite Templating Developer’s Guide

Data Capture Example 1
right of this column; use colspan to indicate the item is to be spread over multiple columns. The
rowcontinue and colspan attributes are only supported in TeamSite Templating Browser. A
<ruleset> element can contain any number of <item> elements. Each <item> element must
contain at least one instance. The optional subelements for <item> are <label>, <description>,
and <database>. The <label> and <description> subelements consist of character data. The
information provided by <label> is used as the field name in the data capture form. If <label> is
not included, the name attribute of the <item> element is used as the field name. A
<description> provides more details about what the data capture item represents or the format
that may be required for data entry.

The <database> subelement facilitates the use of the appropriate data type in DataDeploy and does
not impact templating. The <database> subelement has four attributes: deploy_column specifies
whether a column in the DataDeploy table should be built for that item; searchable can be either
"t" (default) or "f"; data-type is required and is any valid JDBC database type; data-format
describes the format if date or time is specified for the data-type attribute. If a value for data-
format is specified, the instance should contain a validation regex to force the correct entry in the
field.

Item names must be unique within a nested section. For example, the following syntax is illegal
because it uses the item name Section twice in the same nested section in the <ruleset> element:

<ruleset name="Press Release">

<item name="Section">

<text size="40" maxlength="100">

</text>

</item>

<item name="Section">

<text size="80" maxlength="200">

</text>

</item>

</ruleset>
49

Setting Up Data Capture Templates
However, the following syntax is legal because it uses the item name Section in different nested
sections:

<ruleset name="Press Release">

<item name="Morning Edition">

<replicant required="t" max="4">

<item name="Section">

<text size="80" maxlength="200">

</text>

</item>

</replicant>

</item>

<item name="Evening Edition">

<replicant required="t" max="4">

<item name="Section">

<text size="100" maxlength="400">

</text>

</item>

</replicant>

</item>

</ruleset>

Instance

An instance defines how to capture data for an item. An instance can also define an ACL that
determines which (if any) instance a specific user is allowed to use to enter data. Instances with their
attributes and subelements are described in the following table:
50 TeamSite Templating Developer’s Guide

Data Capture Example 1
Instance Description

<browser> Lets a content contributor navigate through the workarea to select a file.
Attributes:

• ceiling-dir: Sets the upper boundary for navigation. The content
contributor can never go above the current workarea in the directory
structure. The ceiling-dir attribute lets you set the ceiling below the
current workarea.

• extns: Comma delimited list of file extensions. Files with these extensions
are displayed during navigation.

• initial-dir: The initial directory that is displayed at the start of
navigation.

• size: The number of characters that can display in the browse field.

• maxlength: The maximum number of characters the user can enter.
• required: Specifies whether data must be captured by this instance. The

default setting is f (not required). Setting it to t specifies that a user must
specify a value for this item.
51

Setting Up Data Capture Templates
<browser>
(continued)

Subelements:
• <allowed>: Lets you set an ACL to specify which users can or cannot use a

specific instance to enter data. If <allowed> is not set, any user can enter
data for the instance. The <allowed> element can have any of the following
subelements:
– <cred>: Lets you name a user or role in the ACL (for example,
user="joe" or role="master").

– <and>: Logical and statement for grouping ACL credentials.
– <or>: Logical or statement for grouping ACL credentials.
– <not>: Logical not statement for negating ACL credentials. Users who

are not allowed do not see the instance on their data capture form.

See the examples on page 60.

• <callout>: Creates a button that calls an external program. This
subelement is maintained for compatibility with previous versions and
should not be used in new data capture files.

– type: Must be java-class or cgi.

– location: Specifies the URL of a jar file or class file. The file does not
necessarily have to be on the same server as TeamSite Templating.

– class: Specifies the actual name of the class in the jar file.

– label: Identifies the text on the button in the data capture form.

– window-features: Determines how the window with the CGI
program displays. See the discussion of WindowAttributes in the TeamSite
Administration Guide.

Instance Description
52 TeamSite Templating Developer’s Guide

Data Capture Example 1
<browser>
(continued)

Subelements (continued):
• <java-callout>: Creates a button that calls a Java external program for

use with TeamSite Templating Java (see Appendix A, “Using Callouts”). S It
has the following elements:

– location: Specifies the URL of a jar file or class file. The file does not
necessarily have to be on the same server as TeamSite Templating.
Supported only in TeamSite Templating Java.

– class: Specifies the actual name of the class in the jar file.

– label: Label of the button that launches the callout code.

• <cgi-callout>: Creates a button that calls a CGI program for use with
TeamSite Templating Browser (see Appendix A, “Using Callouts”).It has the
following elements:

– url: URL of the CGI program to run.Supported only in TeamSite
Templating Browser.

– label: Identifies the text on the button in the data capture form.

– window-features: Determines how the window with the CGI
program displays. See the discussion of WindowAttributes in the TeamSite
Administration Guide.

Instance Description
53

Setting Up Data Capture Templates
<checkbox> Specifies that data will be captured using one or more check boxes.
Attributes:

• delimiter: Specifies the delimiting character used when data from all
check boxes is concatenated by the data capture subsystem. The default
delimiter is a comma (,).

• required: See <browser>.
Subelements:

• <allowed>: See <browser>.

• <callout>: See <browser>.

• <java-callout>: See <browser>.

• <cgi-callout>: See <browser>.

• (%chooser-options;): Parameter entity reference that has the following
values:

– <inline>: Provides a method for making server-side inline callout
programs that return multiple XML elements to the data capture form
(see page 64 for additional details).

– <option>: Lets you assign a label or value to a check box so that a
user can enter only the predetermined label or value data by checking the
check box. Also lets you specify whether the check box is initially
displayed as being selected by default. A <checkbox> element must
have at least one <option> subelement. See the DTD on page 76 for
syntax details.

Instance Description
54 TeamSite Templating Developer’s Guide

Data Capture Example 1
<hidden> Specifies that the data will not be shown in the data capture form. A <hidden>
field may receive data from a callout program. Note: You cannot currently specify a
default value.
Attributes:

• required: See <browser>.
Subelements:

• <allowed>: See <browser>.

• <callout>: See <browser>.

• <java-callout>: See <browser>.

• <cgi-callout>: See <browser>.

<radio> Specifies that data will be captured using one or more radio buttons. Note: You
cannot currently specify a default value.
Attributes:

• required: See <browser>.
Subelements:

• <allowed>: See <browser>.

• <callout>: See <browser>.

• <java-callout>: See <browser>.

• <cgi-callout>: See <browser>.

• <inline>: See <checkbox>.

• <option>: See <checkbox>. A <radio> element must have at least one
<option> subelement.

<readonly> Specifies that the data will be shown on the data capture form but will not be
editable.
Subelements:

• <allowed>: See <browser>.

• <callout>: See <browser>.

• <java-callout>: See <browser>.

• <cgi-callout>: See <browser>.

Instance Description
55

Setting Up Data Capture Templates
<replicant> Specifies a repeatable instance that can contain multiple nested items and
instances. When there are multiple instances, the first instance whose ACL allows
the current user to enter data will be the instance used for that user.
<replicant> is the only instance that can contain nested items and instances.
Whenever additional iterations of the instance can be displayed (that is, if the max
threshold has not yet been reached), the Insert menu item or icon is active.
Whenever iterations of the instance can be removed (that is, if the min threshold
has not yet been reached), the Delete menu item or icon is active. If a
<replicant> has four items, the Insert menu item displays another set of four
items in the data capture form.
Attributes:

• default: The number of instance iterations displayed initially in the data
capture form.

• max: The maximum number of items that can reside within the replicant
instance.

• min: The minimum number of items that can reside within the replicant
instance.

• combination: Specifies whether the entire set of items will be replicated
when the user requests a replicant or whether the user will be prompted to
select one of the replicant items. The valid values are or and and.

• hide-name: Determines whether the label displays for each replicant.
Subelements:

• <allowed>: See <browser>.

• <item>: See Item on page 48.

• <itemref>: A <container> that represents a set of the subelements of an
XML element type will contain an <itemref> reference for each
subelement type it refers to.

• <container>: A <container> is a non-repeating, named set of data
capture items. In addition to the combination and hide-name attributes,
you can also include the name attribute to specify the field name.

Instance Description
56 TeamSite Templating Developer’s Guide

Data Capture Example 1
<select> Specifies that data will be captured using a drop-down list.
Attributes:

• delimiter: See <checkbox>.

• required: See <browser>.

• multiple: Specifies whether more than one item can be selected. The
default value is f (only one item can be selected). Setting multiple="t"
specifies that a user can select more than one item.

• size: The number of selections that display in the selection box at one time
when multiple is t.

• width: The width of the drop-down or select list. (Not respected by
browser UI.)

Subelements:
• <allowed>: See <browser>.

• <callout>: See <browser>.

• <java-callout>: See <browser>.

• <cgi-callout>: See <browser>.

• <inline>: See <checkbox>.

• <option>: See <checkbox>.

Instance Description
57

Setting Up Data Capture Templates
<text> Specifies that data will be entered and captured using an unformatted single-line
text field.
Attributes:

• maxlength: The maximum number of characters the user can enter.

• required: See <browser>.

• size: The number of characters that display in the text box.

• validation-regex: Uses extended regex syntax to set validation criteria
for text entered by a user. A retry message appears in the data capture form
if the entered text does not meet the specified criteria.

Subelements:
• <allowed>: See <browser>.

• <default>: The default text that displays in the field when the data capture
form opens.

• <callout>: See <browser>.

• <java-callout>: See <browser>.

• <cgi-callout>: See <browser>.

Instance Description
58 TeamSite Templating Developer’s Guide

Data Capture Example 1
<textarea> Specifies that data will be entered and captured in a text field of a specified size.
Attributes:

• cols: The width (in characters) of the text area. If rtf="t" is set, width in
pixels.

• required: See <browser>.

• rows: The height (in rows) of the text area. If rtf="t" is set, height in
pixels.

• wrap: Handles word wrapping in text input areas in forms. When off is set,
lines are sent exactly as typed; when virtual is specified, the text word
wraps in the form, but long lines are sent as one line; when physical is
set, the word wraps and text are transmitted at all wrap points.Note: The
Java UI does not distinguish between virtual and physical.

• validation-regex: See <text>. The validation-regex and rtf
attributes cannot both be specified for the same textarea.

• rtf: Allows user to set text styles of bold, italics, underscoring, and
hyperlink for Java-based templates.

• line-break: Controls how line breaks are handled when rtf="t". If set
to P, all hard returns in the rtf content are replaced by surrounding <P> and
</P> tags; that is, each line is converted into a HTML equivalent of a
paragraph. If set to BR, all hard returns are replaced by
. If a line-break
is not specified, hard returns are preserved as they are in the content. This
setting is not valid for the VisualFormat editor.

• external-editor: Specifies the editor to be used for text formatting. The
currently accepted value is "VisualFormat". This option is only valid for
clients on Windows platforms (both Java and browser interfaces).

• external-editor-config: Specifies which configuration files can be
used. The default file is /iw/config/visualformatconfig.xml.If the
path starts with a /, it is assumed to be an absolute path on the TeamSite Web
server. Otherwise, the file is assumed to be in /iw/config. Refer to the
TeamSite Templating: VisualFormat Developer’s Guide.

Instance Description
59

Setting Up Data Capture Templates
Details on Attributes and Subelements of Instances

This section provides additional details on the attributes and subelements described in the instance
table.

The <allowed> Attribute

The following code allows all users except joe to use the current instance:

<allowed>

 <not>

 <cred user="joe">

 </cred>

 </not>

</allowed>

In the following example, <allowed> sets one instance for editors and another instance for all other
roles. The first instance a user satisfies is the one that is used.

<item name= "abc">

 <instance>

 <--only for editors-->

 <allowed> <cred role="editor"/> </allowed>

 </instance>

 <instance>

 <!--for everyone else-->

 </instance>

</item>

<textarea>

(continued)

Subelements:
• <allowed>: See <browser>.

• <default>: See <text>.

• <callout>: See <browser>.

• <java-callout>: See <browser>.

• <cgi-callout>: See <browser>.

Instance Description
60 TeamSite Templating Developer’s Guide

Data Capture Example 1
The following example shows how to prohibit multiple roles from editing a field. If the <or>
statement is not included, only the first role is not allowed.

<allowed>

 <not>

 <or>

 <cred role='master'/>

 <cred role='admin'/>

 <cred role='editor'/>

 <cred role='author'/>

 </or>

 </not>

</allowed>

The following code segments show some examples of using <allowed> with <readonly>. The
<readonly> tag makes a field read-only to certain users, which means that they can only read it, and
they cannot write to it.

This example says that only the user chris gets a text field for the Headline. Implicitly, it is read-
only for everybody else.

<item name="Headline">

 <text>

 <allowed><cred user="chris"/></allowed>

 </text>

</item>

The functionality of the preceding example is identical to that of the following example that includes
the <readonly> element:

<item name="Headline">

 <text>

 <allowed><cred user="chris"/></allowed>

 </text>

 <readonly/>

 <!-- Absence of an <allowed> tag means "everyone". -->

</item>
61

Setting Up Data Capture Templates
You could reverse it so the user chris gets a read-only field, and everyone else gets a text box:

<item name="Headline">

 <readonly>

 <allowed><cred user="chris"/></allowed>

 </readonly>

 <text/>

</item>

The <required> and <hidden> Attributes

The following code limits access to a required text area. Master users can see the text area and must
fill it out, but nobody else can see the field. Users who are not allowed to see this text area will not be
forced to fill it out and will be able to save the data content record even though the value for the text
area is not set.

<item name="SecretComments">

 <textarea cols="15" rows="10" required="t">

 <allowed>

 <cred role="master" />

 </allowed>

 </textarea>

 <hidden/>

</item>

The following code also limits access to a required text area. In this case, everyone except Master
users can see the text area and must fill it out. Master users will be able to save the data content record
even though the value is not set.

<item name="SecretComments">

 <hidden >

 <allowed>

 <cred role="master" />

 </allowed>

 </hidden>

 <textarea cols="15" rows="10" required="t" />

</item>
62 TeamSite Templating Developer’s Guide

Data Capture Example 1
The following code requires an Author to enter a value for a hidden field (for example, through a
callout button). Masters, Administrators, and Editors may enter a value but are not required to.

Note: Use this functionality with extreme caution. Requiring users to enter information when they
cannot see that the information is required can severely impair usability.

<item name="SecretComments">

 <hidden required="t" >

 <allowed>

 <cred role="author" />

 </allowed>

 </hidden>

 <textarea cols="15" rows="10" / >

</item>

In the following code, all users are required to have a value in the text area. However, the text area is
hidden for Authors. In this scenario, an Editor, Administrator, or Master user would create the data
content record and set a hidden field, and only then would Authors be able to edit and save the data
content record. Authors cannot save this data content record if the hidden field has not been pre-
filled.

Note: Use this functionality with extreme caution. Requiring users to enter information when they
cannot see that the information is required can severely impair usability.

<item name="SecretComments">

 <hidden required="t" >

 <allowed>

 <cred role="author" />

 </allowed>

 </hidden>

 <textarea cols="15" rows="10" required="t"/ >

</item>
63

Setting Up Data Capture Templates
The <rtf> and <external-editor> Attributes

The <rtf> attribute for a <textarea> element allows users of Java templates to set text styles of
bold, italics, and underscore. It also provides an easy method of setting a hyperlink. The
<line-break> attribute controls how line breaks are handled in textareas that are have rtf set.

The <external-editor> attribute for a <textarea> element provides VisualFormat editing
capabilities for both browser-based and Java-based templating users. However, users must be using a
client machine running a Windows operating system. Refer to the TeamSite Templating User’s Guide for
information on using this feature.

Template developers may specify a configuration file to be used for a specific text area.Refer to the
TeamSite Templating: VisualFormat Developer’s Guide for information on creating configuration files.

The following table identifies the editing and formatting capabilities on various client platforms.

The <inline> Subelement

The <inline> element is shown in the DTD for the <checkbox>, <radio>, and <select>
elements. You can actually use it anywhere in the data capture template but probably are most likely to
use it in these three elements. The <inline> element cannot contain <cred> subelements or
additional <inline> elements.

An <inline> element should have a command attribute such as:

<inline command="/bin/cat /tmp/a /tmp/b"/>

Browser-based Templating Java-based Templating

Windows platforms VisualFormat editing available RTF formatting available
VisualFormat editing available
If both are specified, VisualFormat takes
precedence.

Unix platforms No formatting capability RTF formatting available

Macintosh platforms No formatting capability RTF formatting available
64 TeamSite Templating Developer’s Guide

Data Capture Example 1
The inline callout program should return a well-formed XML document. The document's outermost
element should be a <substitution> element. It should contain any XML that is valid according to
datacapture5.0.dtd. That <substitution> element will contain six <option> elements,
enumerating a variety of types of yacht hull materials (see page 72).

<?xml version="1.0" encoding="UTF-8"?>

<substitution>

 <option value="Lead" label="Lead"/>

 <option value="Tin" label="Tin"/>

 <option value="Silicon" label="Silicon"/>

 <option value="Plastic" label="Plastic"/>

 <option value="Paper" label="Paper"/>

 <option value="Glass" label="Glass"/>

 </substitution>

This simple callout outputs a static result. A more sophisticated callout program could query a
database and return the query results as <option> elements.

When a server-side inline callout program is executed, it inherits the following environment
variables:

• IW_DCT: The file system path to the datacapture.cfg in use (for example, /iwmnt/
default/main/development/WORKAREA/maudlin/templatedata/press/events/

datacapture.cfg).

• IW_ROLE: The role of the current data capture user (for example, editor).

• IW_USER: The full user name of the current templating user (for example, andre).

• IW_WORKAREA: The vpath to the current workarea (for example, /default/main/
development/WORKAREA/chris).

The exit status from a server-side inline callout should be 0 to indicate a successful execution.
Normally an inline callout should not return a non-zero value. However, an example where a non-
zero value may be needed to indicate an error condition is if you are populating a <select> menu by
making a database query and the database is offline. Rather than displaying a form with no choices, you
may prefer an exception be displayed.
65

Setting Up Data Capture Templates
Customizing the Appearance of Java Data Capture Forms

To customize the appearance of your Java-based data capture forms use the dccustomization.xml
file. This file is located on the TeamSite server at iw-home/httpd/iw/config/
dccustomization.xml. The default file is:

<templating-ui-customization>

 <datacapture-ui-customization>

 <form bgcolor="#FFFFFF"/>

 <required-field>

 <label color="#BB0000" font="Dialog" fontstyle="bold"/>

 </required-field>

 <field>

 <label color="#000000" font="Dialog" fontstyle="plain"/>

 </field>

 <logo name="newtslogo.gif"/>

 </datacapture-ui-customization>

</templating-ui-customization>

Colors are specified by their hexadecimal value, preceded by a # sign (similar to specifying colors in
HTML files). Tags are described as follows:
66 TeamSite Templating Developer’s Guide

Data Capture Example 1
One file is used for all data categories and types. Templating clients must restart TeamSite Templating
Java for changes to take effect.

Tag Description

form bgcolor The color of the data capture form.

required field The labels for all required fields in the form. You may specify a label color,
font, and font style.

field The labels for all non-required fields in the form. You may specify a label
color, font, and font style.

label color The color of the label used to identify the field or required field. Specifying
different label colors for the two field types assists users who are entering data
in the data capture forms.

font One of the following logical font names must be specified. The logical font
name is mapped to a native font for the underlying windowing system. If the
specified font name is not recognized by the system, the default font is used.
The font names are:
Dialog Helvetica
SansSerif TimesRoman
Serif Courier
Monospaced

fontstyle The supported font styles are:
bold italic plain

logo The logo in the upper left corner of the data capture form can be changed by
entering a .gif file name. The .gif file must be in the iw-home/httpd/
iw-icons directory.
67

Setting Up Data Capture Templates
Example 1 Data Content Record

This section shows the data content record that is created if a content contributor enters the following
data in the Press Release data capture form:

Press Release Data Capture Form (with data)
68 TeamSite Templating Developer’s Guide

Data Capture Example 1
The resulting data content record is as follows:
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE record SYSTEM "dcr5.0.dtd">

<record name="eal.pr.1" type="content">

<item name="Publish Date">

<value>2001-04-24</value>

</item>

<item name="Headline">

<value>Candidate Joins Race</value>

</item>

<item name="Secondary Headline">

<value></value>

</item>

<item name="Introductory Paragraph">

<value></value>

</item>

<item delimiter=", " name="Story">

<value>

<item name="Subheading">

<value></value>

</item>

<item name="Section Paragraphs">

<value>

<item name="Paragraphs">

<value>A new candidate enters the race as of 4/24/01.

</value>

</item>

</value>

</item>

</value>

</item>

<item name="Author">

<value>eal</value>

</item>

<item name="EMail">

<value>eal@example.com</value>

</item>

<item name="Languages">

<value>English</value>

</item>

</record>
69

Setting Up Data Capture Templates
Data Capture Example 2

The following sections show a hypothetical Yacht Information data capture form and the
datacapture.cfg file that generates it.

Example 2 Data Capture Form

The following is a hypothetical Yacht Information data capture form (browser interface). This form is
included in the TeamSite Templating distribution and is available for use after you configure the
example templating environment.

This example shows the usage of the rowcontinue and colspan elements used for placing multiple
items on one line (supported only in TeamSite Templating Browser).
70 TeamSite Templating Developer’s Guide

Data Capture Example 2
Data Capture Form for Yacht datacapture.cfg
71

Setting Up Data Capture Templates
Example 2 datacapture.cfg File
The internet/yacht/datacapture.cfg file that generates this Yacht Information data capture
form is as follows:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE datacapture SYSTEM "datacapture5.0.dtd">

<data-capture-requirements type="content" name="yacht">

 <!-- data-capture-requirements elements contain area elements -->

 <ruleset name="Vessel Information">

 <description>

 Allows the entry of data relating to a sailing vessel and its

 seasonal charter prices.

 </description>

 <container name="General Info" combination="and">

 <item name="Boat Manufacturer" rowcontinue="t">

 <database data-type="VARCHAR(40)" />

 <text required="t" maxlength="40" />

 </item>

 <item name="Boat Model" rowcontinue="f">

 <database data-type="VARCHAR(40)" />

 <text required="t" maxlength="40" />
 </item>

 <item name="Length" rowcontinue="t">

 <database data-type="SMALLINT" />

 <text required="t" maxlength="3" validation-regex="^[0-9]+?" />
 </item>

 <item name="Rig" rowcontinue="f">

 <database data-type="CHAR(6)" />

 <select required="t">

 <option selected="t" value="Sloop" label="Sloop"/>

 <option value="Ketch" label="Ketch"/>

 <option value="Cutter" label="Cutter"/>

 </select>

 </item>
72 TeamSite Templating Developer’s Guide

Data Capture Example 2
 <item name="Hull Type" colspan="2">

 <database data-type="CHAR(9)" />

 <radio required="t">

 <option selected="t" value="Monohull" label="Monohull"/>

 <option value="Catamaran" label="Catamaran"/>

 <option value="Trimaran" label="Trimaran"/>

 </radio>

 </item>

 <item name="Hull Material">

 <database data-type="VARCHAR(15)" />

 <select required="t">

 <!-- To use the example server-side

 inline callout, uncomment the

 next line for UNIX:

<inline command="__IW_HOME__/iw-perl/bin/iwperl __IW_HOME__/examples/

Templating/config/example_server_side_inline_callout.ipl" />

 or this line for Windows NT:

<inline command="__IW_HOME__/iw-perl/bin/iwperl.exe __IW_HOME__/examples/

Templating/config/example_server_side_inline_callout.ipl" />

 replacing "__IW_HOME__" with

 the location of your TeamSite

 installation. -->

 <option value="Fiberglass" label="Fiberglass"/>

 <option value="Wood" label="Wood"/>

 <option value="Steel" label="Steel"/>

 <option value="Aluminium" label="Aluminium"/>

 <option value="Ferrocement" label="Ferrocement"/>

 <option value="Other" label="Other"/>

 </select>

 </item>

 </container>
73

Setting Up Data Capture Templates
 <item name="Pricing">

 <database deploy-column="f" />

 <replicant min="1" max="5">

 <item name="Season">

 <select required="t" multiple="t" size="5">

 <option selected="t" value="All Year" label="All Year"/>

 <option value="Winter" label="Winter"/>

 <option value="Spring" label="Spring"/>

 <option value="Summer" label="Summer"/>

 <option value="Fall" label="Fall"/>

 </select>

 </item>

 <item name="Time Periods">

 <replicant min="1" max="3">

 <item name="Time Period">

 <select required="t">

 <option value="Day" label="Day"/>

 <option value="Week" label="Week"/>

 <option value="Month" label="Month"/>

 </select>

 </item>

 <item name="Price">

 <description>Whole dollar amount</description>

 <text required="t" maxlength="10"
 validation-regex="^[0-9]+$" />
 </item>

 </replicant>

 </item>

 </replicant>

 </item>

 <item name="Number of Cabins">

 <database data-type="SMALLINT" />

 <select required="t">

 <option value="1" label="One"/>

 <option value="2" label="Two"/>

 <option value="3" label="Three"/>

 <option value="4" label="Four"/>

 <option value="5" label="Five"/>

 <option value="6" label="Six"/>

 </select>

 </item>
74 TeamSite Templating Developer’s Guide

Data Capture Example 2
 <item name="Number of Staterooms">

 <database data-type="SMALLINT" />

 <select required="t">

 <option value="1" label="One"/>

 <option value="2" label="Two"/>

 <option value="3" label="Three"/>

 <option value="4" label="Four"/>

 <option value="5" label="Five"/>

 <option value="6" label="Six"/>

 </select>

 </item>

 <item name="Included">

 <database data-type="VARCHAR(32)" />

 <checkbox>

 <option value="Spinnaker" label="Spinnaker"/>

 <option value="Tri-sail" label="Tri-sail"/>

 <option value="Genoa" label="Genoa"/>

 <option value="Jib" label="Jib"/>

 <option value="Storm Jib" label="Storm Jib"/>

 <option value="Dinghy" label="Dinghy"/>

 <option value="Liferaft" label="Liferaft"/>

 <option value="EPIRB" label="EPIRB"/>

 </checkbox>

 </item>

 <item name="Picture">

 <database deploy-column="f" />

 <browser extns=".gif,.jpg"

 initial-dir="/templatedata/internet/yacht/images"/>

 </item>

 <item name="Details">

 <database deploy-column="f" />

 <textarea rows="5" cols="40"/>

 </item>

 </ruleset>

</data-capture-requirements>
75

Setting Up Data Capture Templates
Data Capture Template DTD

The following code shows the datacapture5.0.dtd file that contains the syntax of the elements
needed to create a datacapture.cfg file.

<!-- datacapture5.0.dtd -->

<!-- Start with some basic parameter entities. -->

<!ENTITY % items "container|item|itemref">

<!ENTITY % chooser-options "option|inline">

<!ELEMENT data-capture-requirements (symbol-table?,ruleset+)>

 <!ATTLIST data-capture-requirements

 name CDATA #IMPLIED

 type (metadata|content|workflow) #REQUIRED

 dtd-system-identifier CDATA #IMPLIED

 >

<!-- The 'dtd-system-identifier' attribute is a URI indicating the

 DTD from whence a particular data-capture-requirements was

 derived, if any.

 In TeamSite Templating, the value of this attribute is used as

 the system identifier of the document type declaration of a DCR

 if and only if that DCR's type is "xml", as defined in

 templating.cfg.

 -->

<!ELEMENT symbol-table (symbol*) >

<!ELEMENT symbol (%items;)? >

 <!ATTLIST symbol

 name CDATA #IMPLIED

 regex CDATA #IMPLIED

 >
76 TeamSite Templating Developer’s Guide

Data Capture Template DTD
<!ELEMENT ruleset (label?,description?,(%items;)*)>

 <!ATTLIST ruleset

 name CDATA #REQUIRED

 >

<!ELEMENT container (label?,description?,(%items;)*) >

 <!ATTLIST container

 name CDATA #REQUIRED

 hide-name (t|f) "f"

 combination (and|or) "and"

 >

<!ELEMENT itemref EMPTY >

 <!ATTLIST itemref

 name CDATA #REQUIRED

 >

<!ELEMENT item (label?,description?,database?(checkbox|radio|

 text|textarea|select|replicant|browser|

 readonly|hidden)+) >

 <!ATTLIST item

 name CDATA #REQUIRED

 rowcontinue (t|f) "f"

 colspan CDATA #IMPLIED

 >

<!ELEMENT label (#PCDATA) >

<!ELEMENT description (#PCDATA) >

<!ELEMENT text (allowed?,callout?,java-callout?,cgi-callout?,
 default?) >
 <!ATTLIST text

 required (t|f) "f"

 maxlength CDATA "0"

 size CDATA "0"

 validation-regex CDATA #IMPLIED

 >

<!-- validation-regex is a Perl regex for validating this element -->
77

Setting Up Data Capture Templates
<!ELEMENT textarea (allowed?,callout?,java-callout?,cgi-callout?,

 default?) >

 <!ATTLIST textarea

 required (t|f) "f"

 rows CDATA "0"

 cols CDATA "0"

 wrap (off|virtual|physical) "off"

 validation-regex CDATA #IMPLIED

 rtf (t|f) "f"

 line-break (P | BR) #IMPLIED

 external-editor CDATA ""
 external-editor-config CDATA #IMPLIED

 >

<!-- validation-regex is a Perl regex for validating this element -->

<!ELEMENT browser (allowed?,callout?,java-callout?,cgi-callout?) >

 <!ATTLIST browser

 required (t|f) "f"

 maxlength CDATA "0"

 size CDATA "0"

 initial-dir CDATA #IMPLIED

 ceiling-dir CDATA #IMPLIED

 extns CDATA #IMPLIED

 >

<!ELEMENT readonly (allowed?,callout?,java-callout?,cgi-callout?) >

<!ELEMENT hidden (allowed?,callout?,java-callout?,cgi-callout?) >

 <!ATTLIST hidden

 required (t|f) "f"

 >

<!ELEMENT checkbox (allowed?,callout?,java-callout?,cgi-callout?,

 (%chooser-options;)+) >
 <!ATTLIST checkbox

 required (t|f) "f"

 delimiter CDATA ", "

 >
78 TeamSite Templating Developer’s Guide

Data Capture Template DTD
<!ELEMENT radio (allowed?,callout?,java-callout?,cgi-callout?,

 (%chooser-options;)+) >

 <!ATTLIST radio

 required (t|f) "f"

 >

<!ELEMENT select (allowed?,callout?,java-callout?,cgi-callout?,

 (%chooser-options;)+) >
 <!ATTLIST select

 required (t|f) "f"

 size CDATA "0"

 multiple (t|f) "f"

 delimiter CDATA ", "

 width CDATA #IMPLIED

 >

<!-- The delimiter attribute is for multiple=t only -->

<!ELEMENT option EMPTY >

 <!ATTLIST option

 selected (t|f) "f"

 value CDATA #IMPLIED

 label CDATA #REQUIRED

 >

<!ELEMENT replicant (allowed?, (%items;)*)>

 <!ATTLIST replicant

 min CDATA "0"

 max CDATA "1"

 default CDATA "1"

 combination (and|or) "and"

 hide-name (t|f) "t"

 >

<!ELEMENT allowed (cred|and|or|not)>

<!ELEMENT cred EMPTY>

 <!ATTLIST cred

 role CDATA #IMPLIED

 user CDATA #IMPLIED

 >
79

Setting Up Data Capture Templates
<!ELEMENT and (cred|and|or|not)+>

<!ELEMENT or (cred|and|or|not)+>

<!ELEMENT not (cred|and|or|not)>

<!ELEMENT default (#PCDATA)>

<!-- The callout element is deprecated in favor of java-callout and

cgi-callout -->

<!ELEMENT callout (param*) >

 <!ATTLIST callout

 type (java-class) #REQUIRED

 label CDATA #REQUIRED

 location CDATA #REQUIRED

 class CDATA #REQUIRED

 url CDATA #IMPLIED

 window-features CDATA #IMPLIED

 >

<!--The form of this element is exactly the same as that for the callout

element in datacapture.4.0.dtd. -->

<!ELEMENT cgi-callout EMPTY>

 <!ATTLIST callout

 url CDATA #REQUIRED

 label CDATA #REQUIRED

 window-features CDATA #IMPLIED

 >

<!--The form of this element is exactly the same as that for the callout

element in datacapture4.5.dtd. -->

<!ELEMENT java-callout (param*) >

 <!ATTLIST callout

 label CDATA #REQUIRED

 location CDATA #REQUIRED

 class CDATA #REQUIRED

 >
80 TeamSite Templating Developer’s Guide

Data Capture Template DTD
<!ELEMENT param EMPTY >

 <!ATTLIST param

 name CDATA #REQUIRED

 value CDATA #REQUIRED

 >

<!ELEMENT database EMPTY >

 <!ATTLIST database

 deploy-column (t|f) "t"

 searchable (t|f) "t"

 data-type CDATA "VARCHAR(255)"

 data-format CDATA #IMPLIED

 >

<!-- An 'inline' element should have a 'command' attribute. e.g.:

 <inline command="/bin/cat /tmp/a /tmp/b"/>

 The callout program should return a well-formed XML document.

 The document's outermost element should be a "substitution"

 element. It should contain any XML that is valid according

 to this DTD.

 That "substitution" element's contents will replace the

 "inline" element in the datacapture.cfg file.

 So, if this DCT snippet:

 <select>

 <inline command="blah" />

 </select>

 runs the "blah" callout program, and that program returns this text:

 <substitution>

 <option label="ABC" />

 <option label="123" />

 <option label="Jackson 5" />

 </substitution>

81

Setting Up Data Capture Templates
 then the DCT snippet will, after callout execution and inline

 substitution, look like:

 <select>

 <option label="ABC" />

 <option label="123" />

 <option label="Jackson 5" />

 </select>

 -->

<!ELEMENT inline EMPTY >

 <!ATTLIST inline

 command CDATA #REQUIRED

 >

82 TeamSite Templating Developer’s Guide

Chapter 4

Setting Up Presentation
Templates

Creating Presentation Templates

Presentation templates are designed to display data. The data may be obtained from the following
sources:

• Data content records

• Queries to relational databases

• Perl-generated output

• Included files

• Included presentation components

You can combine data content records with presentation templates to generate output files. You can
also create output files using relational database queries and output generated through the Perl API.
TeamSite Templating can generate any text content, including HTML, XML, or any application
server code. Using TeamSite Templating, you can precompile elements or a dynamic page, maintain
dynamic content as application server code, eliminate the need for sever-side includes, and output an
.asp or .jsp file that can be served dynamically at runtime in the production environment. At a
minimum, TeamSite Templating can precompile flat HTML files that can sit as static files to provide
maximum performance.

Presentation templates are written in XML and may contain custom Interwoven XML tags, HTML,
and Perl.

The following diagram shows an example of how an output page may be generated when data is
obtained from a data content record.
83

Setting Up Presentation Templates
Generating a Web Page with TeamSite Templating

Standard Header –

Standard Footer –

Body Text

Image

Caption

Navigation

Related LinksBody text, Image, and
Caption are obtained
from the data content
record using iw_xml

Navigation
and Related
Links can be
obtained
from
included files,
included
presentation
templates,
queries to a
database, or

using an included file instead of an shtml directive.

using an included file.

from code
entered as
CDATA.

tags and HTML code.

This included file can be changed
once and the entire site regenerated.
84 TeamSite Templating Developer’s Guide

Creating Presentation Templates
Presentation templates allow you to:

• Generate output files.

• Use built-in tags to fetch elements from XML data content records, loop on lists, do SQL queries,
perform conditional logic, and so on.

• Create custom XML tags that encapsulate arbitrary presentation logic. Non-programmers can use
custom high-level visual building blocks without writing any code.

• Create custom libraries and invoke them from within the <iw_perl> tag. Lower-level visual
building blocks can be accessed by programmers directly from a template.

• Intermix XML and Perl to generate any output format (such as html, asp, and jsp). Presentation
information does not need to be hard-coded into the template.

• Make common code components reusable across templates.

• Create generic components (component templates) that display differently based on the
parameters they are given by their enclosing template.

• Eliminate page compilation costs on the production web server, thus increasing scalability of your
web site.

• Use component templates. The component template may have key, value parameters passed to it
by the enclosing template. For example, a component template may include an SQL query whose
body depends on parameters from the enclosing template. Component templates do not take a
data content record.

To write a presentation template, you must know some basic XML. Specifically, an understanding of
the following XML topics is useful:

• CDATA

• “Well-formed” documents

• Entities

– >
– <
– &
– '
– "

 A useful reference is http://www.xml.com/axml/testaxml.htm.
85

Setting Up Presentation Templates
Interwoven XML tags are an important part of writing presentation templates. The following is an
overview of the existing tags:

<iw_xml> Base class for presentation template XML elements.

<iw_pt> Specifies that the document is a presentation template, and names it.

<iw_value> Inserts the value of a Perl expression or data content record item.

<iw_load_dcr> Used for loading data content records or arbitrary XML files dynamically.

<iw_if> Provides an expression that is evaluated as being either true or false to
determine whether the <iw_then> or <iw_else> statement will be
used.

<iw_then> Provides contents to be included if the <iw_if> tag’s expression is true.

<iw_else> Provides contents to be included if the <iw_if> tag’s expression is false.

<iw_ifcase> Provides for conditional inclusion of contents.

<iw_case> Used with <iw_ifcase> for conditional inclusion of contents.

<iw_perl> Executes arbitrary Perl code and provides an API for generating input and
using data content records

<iw_ostream> Used to change the default output stream (for multiple output).

<iw_iterate> Iterates through a data content record or Perl list.

<iw-cscript> Inserts the output of the Windows Script Host engine into a generated
page.

<iw_sql_open> Opens a database connection.

<iw_sql_iterate> Iterates SQL result sets.

<iw_sql_query> Queries a database.

<iw_system> Uses output from an external command.

<iw_next> Skips to the next iteration of a (possibly labeled) loop.

<iw_last> Skips to the last iteration of a (possibly labeled) loop.

<iw_include> Inserts a file or the result of compiling a template component in the
generated HTML.

<iw_repeat> Allows you to repeat content a given number of times.
86 TeamSite Templating Developer’s Guide

Creating Presentation Templates
Consider the following guidelines when creating a presentation template:

• When writing presentation templates that obtain information from data content records, refer to
the data capture template that the data content records are based on. Make sure that the names of
the fields are consistent and that you use <iw_iterate> tags in the presentation template if there
are replicant tags in the data capture template (see Chapter 3, “Setting Up Data Capture
Templates”).

• Presentation templates must be well-formed XML. Any HTML contained within a presentation
template outside of a CDATA directive must be well-formed in accordance with XML rules.

• The <iw_value> tag, unlike all other tags, is also interpreted within CDATA sections. If you need
to enclose a large body of text (e.g., HTML) with CDATA, you still have access to data values
within this region.

Using a Presentation Template—An Example

This section provides an overview to show the use of a presentation template. The section includes an
example data content record, a presentation template, and a component template.

The presentation template shows how to use tags to call a component template, include a file, obtain
data from a data content record, and iterate through all values of a field in a data content record.

The Press Release presentation template is shown on page 90. In addition to using HTML, it uses
many of the iw_xml tags. This example is provided as templatedata/internet/pr/
presentation/nested_component_example.tpl in your TeamSite Templating installation.
This presentation template calls the simple.tpl component template (page 94) and accesses a data
content record (page 88) to obtain values. The generated press release is shown (page 95).
87

Setting Up Presentation Templates
The data content record that contains the data for the Press Release presentation template follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE record SYSTEM "dcr5.0.dtd">

<record name="pressrelease" type="content">

 <item name="Publish Date">

 <value>2001-04-19</value>

 </item>

 <item name="Headline">

 <value>Interwoven Announces TeamSite 5.0</value>

 </item>

 <item name="Secondary Headline">

 <value>April 19, 2001</value>

 </item>

 <item name="Introductory Paragraph">

 <value>Interwoven, Inc., the leading provider of enterprise-class

 content management today announced the 5.0 release of TeamSite,

 TeamSite Templating, and OpenDeploy software, along with the

 introduction of two new products -- Interwoven OpenChannel and

 MetaTagger 2.1 software.</value>

 </item>

 <item name="Story">

 <value>

 <item name="Subheading">

 <value>Content Infrastructure</value>

 </item>

 <item name="Section Paragraphs">

 <value>

 <item name="Paragraphs">

 <value>Interwoven also unveiled its new Content

 Infrastructure direction. This broad new product

 functionality addresses the customer need for Content

 Aggregation, Content Collaboration, Content Management,

 Content Intelligence and Content Distribution, to

 provide an underpinning for multiple eBusiness

 initiatives and applications.</value>

 </item>

 </value>

 </item>

 </value>

 </item>
88 TeamSite Templating Developer’s Guide

Creating Presentation Templates
 <item name="Author">

 <value>eal</value>

 </item>

 <item name="EMail">

 <value>sales@interwoven.com</value>

 </item>

 <item name="Language">

 <value>English</value>

 </item>

</record>
89

Setting Up Presentation Templates
The presentation template for the press release follows:

<?xml version="1.0" encoding="UTF-8"?>
<iw_pt name="Press Release 3"><![CDATA[

<HTML>

<!-- Begin CDATA Tag -->

<!-- HTML stuff is enclosed in CDATA tag -->

<HEAD>

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=UTF-8">
</HEAD>

<BODY bgcolor="#FFFFFF" link="#0033CC" vlink="#0033CC" alink="0000FF"

TEXT=#000000 BACKGROUND="/templatedata/internet/pr/images/pixel.gif">

 <TABLE WIDTH="720" VALIGN="top" CELLPADDING="0" CELLSPACING="0"

 BORDER="0">

 <TR><TD WIDTH="720">

]]> <!-- End of CDATA Tag -->

 <!-- nested component -->

 <iw_include pt='/templatedata/components/simple.tpl'>

 <![CDATA[

 $iw_param{Headline} = iwpt_dcr_value('dcr.Headline');

]]>

 </iw_include>

<![CDATA[</TD></TR><TR><TD><TABLE WIDTH="720"><TR valign="top">

 <TD valign="top">]]>

 <iw_include file='templatedata/internet/pr/iwprnavbar.html'/>

<![CDATA[<!-- Begin CDATA Tag -->

 </TD><TD VALIGN="top" WIDTH="510">

]]> <!-- End of CDATA Tag -->

<!-- Begin content area -->

<!-- Headline -->

<P></P>

</br>

<!-- Secondary Headline -->

<h3> <iw_value name='dcr.Secondary Headline'/> </h3>

Using the <iw_include> tag to call the
simple.tpl component template

Using the <iw_include>
tag to include an HTML file

Using <iw_pt> to open and
name the presentation template;
beginning CDATA

Passing “Headline” value
as a parameter to
component template
90 TeamSite Templating Developer’s Guide

Creating Presentation Templates
<!-- Date -->

<P> SUNNYVALE, Calif., <iw_value name='dcr.Date'/>:</P>

<!-- Introductory Paragraph -->

<P><iw_value name='dcr.Introductory Paragraph'/> </P>

<!-- Story -->

<iw_iterate var='story' list='dcr.Story'>

 <!-- Subheading -->

 <iw_value name='story.Subheading'/>

 <!-- Paragraphs -->

 <iw_iterate var='para_value' list='story.Section Paragraphs'>

 <p><iw_value name='para_value.Paragraphs'/></p>

 </iw_iterate>

</iw_iterate>

<!-- Insert 'aboutIW.html' file -->

<p>

<iw_include file='templatedata/internet/pr/aboutIW.html'/>

</p>

<p>For more information on the company and

its software solutions, visit the Interwoven Web site at

www.interwoven.com

or e-mail

 <iw_value name='dcr.EMail'/>

</p>

<!-- HTML stuff is enclosed in CDATA tag -->

<![CDATA[<!-- Begin CDATA tag -->

<p>

<TABLE WIDTH=520 BORDER=0 CELLSPACING=10 CELLPADDING=0>

<TR>

 <TD COLSPAN=2 BGCOLOR=#999999>

 </TD>

</TR>

Obtaining a value from a
data content record using
the <iw_value> tag

Using <iw_iterate> and
<iw_value> to obtain
multiple paragraph values

Opening CDATA
containing HTML

Nesting of
<iw_iterate> tags
91

Setting Up Presentation Templates
<TR>

 <TD COLSPAN=2>

 <!-- Begin question -->

 <CENTER>

 How is Best Buy pushing

 billions of dollars in business towards the Web?

 </CENTER>

 <!-- End question -->

 </TD>

</TR>

<TR>

 <TD COLSPAN=2>

 </TD>

</TR>

<TR>

 <TD COLSPAN=2 BGCOLOR=#999999>

 </TD>

</TR>

<TR>

 <TD WIDTH=250 VALIGN="top">

 <IMG SRC="/templatedata/internet/pr/images/pixel.gif"

 WIDTH=250 HEIGHT=1>

 Global Headquarters

 Interwoven, Inc.
 1195 W. Fremont Ave. #2000

 Sunnyvale, CA 94087 US
 Phone: (408) 774-2000

 </TD>

 <TD WIDTH="250" VALIGN="top">

 How Can We Serve You?

 Let us know at:

 info@interwoven.com
 or Register

 and we will contact you!

<NOBR>Web Team:

 webteam@interwoven.com

 </NOBR>

 </TD>

</TR>
92 TeamSite Templating Developer’s Guide

Creating Presentation Templates
 <TR>

 <TD COLSPAN=2 ALIGN=CENTER>

 <P CLASS="copyright">

 Copyright © 2000

 Interwoven, Inc. All rights reserved. </P>

 </TD>

 </TR>

</TABLE>

</TD>

</TR>

</TABLE>

</TD>

</TR>

</TABLE>

</BODY>

</HTML>

]]> <!-- End CDATA tag -->

</iw_pt> Closing the
presentation template

Closing CDATA
containing HTML
93

Setting Up Presentation Templates
The simple.tpl component template is called from the main presentation template. It prints the
headline it obtains from the calling presentation template. The contents of the simple.tpl
component template is:

<?xml version="1.0" standalone="yes"?>

<iw_pt name="Banner Component PT">

<!-- This is a component PT that can be used inside another PTs -->

<!-- It prints the title that it got from the container PT -->

<TABLE width="720" align="center">

 <TR align="center">

 <TD align="left">

 <IMG SRC="/templatedata/internet/pr/images/iw-logo-small.gif"

 WIDTH="220" HEIGHT="40" BORDER="0"/>

 </TD>

 <TD align="center">

 <H1><iw_value name='$iw_arg{Headline}'/></H1>

 </TD>

 </TR>

</TABLE>

</iw_pt>

Tag that opens
and names the
component template

Tag that obtains the
headline from the
calling template
94 TeamSite Templating Developer’s Guide

Creating Presentation Templates
The press release generated from this presentation template, component template, and data content
record would be as follows:
95

Setting Up Presentation Templates
Interwoven XML Tags

A number of custom Interwoven XML tags are supplied with TeamSite Templating. All of these tags are
derived from a base class, iw_xml, as shown below.

Descriptions and examples of the <iw_xml> tags are provided online in HTML format within your
installed version of TeamSite Templating. Go to http://server/iw/help/tst/pt for an index.

Descriptions of the tags in HTML format are also available at
http://support.interwoven.com/library/devel/tst/pt. This site may also contain
additional examples and other information you may find useful.

Typical man pages are available online for each tag. If iw-home/iw-perl/bin is in your path
statement, you can access these man pages by issuing the command perldoc
TeamSite::PT::tag_name.

iw_perl

iw_repeat

iw_xml

iw_else

iw_if

iw_include
iw_iterate

iw_value

iw_last

iw_next

iw_pt iw_then

iw_sql_iterate

iw_sql_open

iw_sql_query

iw_system
iw_case

iw_ifcase
iw_ostream

iw_load_dcr
iw_cscript
96 TeamSite Templating Developer’s Guide

Chapter 5

Mapping Users, Templates,
and Content Records
This chapter describes how the templating.cfg file maps the interaction between content
contributors, data capture templates, presentation templates, and data content records. Sections in
this chapter discuss the following:

• An overview of templating.cfg.

• An example of a templating.cfg file.

• The templating.cfg DTD.

templating.cfg Overview

The templating.cfg file is an XML file that resides outside of the TeamSite file system in
iw-home/local/config. Each TeamSite Templating installation must have exactly one such file.
By configuring templating.cfg, you can control:

• Which data categories and types TeamSite Templating can use.

• Which presentation templates can generate HTML files on which branches or directories.

• Which presentation templates can be used with a specific data type.

• Which users or roles are allowed to create or edit data content records for a specific data type.

• The location of the presentation template used for previewing generated HTML files.

The following sections describe how to perform these configurations.
97

Mapping Users, Templates, and Content Records
Example templating.cfg File

TeamSite Templating ships with the following sample templating.cfg file:

iw-home/examples/Templating/config/templating.cfg.example

This is the templating.cfg file that configures the example templating environment described in
Chapter 2, “Initial Configuration.” The file configures TeamSite Templating to recognize and use the
following data categories/types:

custom-dtd-example/PressRelease

intranet/deptinfo

intranet/weather

internet/careers

internet/auction

internet/pr

internet/book

internet/medical

internet/yacht

The following section shows a subset of this file with sections for the PressRelease, deptinfo,
weather, careers, and auction data types.

See the diagram key on page 101 for details about items referenced in the templating.cfg file.

Note: The templating.cfg file must use either a UTF-8 or ISO-8859-1 encoding
declaration.With any other encoding, Preview and Generate operations fail with a
“malformed templating.cfg” error.
98 TeamSite Templating Developer’s Guide

Example templating.cfg File
<?xml version="1.0" encoding= "UTF-8"? standalone="no"?>

<!DOCTYPE templating SYSTEM "templating5.0.dtd">

<templating>

<category name="custom-dtd-examples">

<locations>

<branch vpath-regex=".*" />

</locations>

<data-type name="PressRelease" dcr-type="xml"/>

<presentation>

<template name="PressRelease.tpl" extension="html">

<locations>

<branch vpath-regex=".*" preview-dir="/">

<directory dir-regex=".*" />

</branch>

</locations>

</template>

</presentation>

</data-type>

</category>

<category name="intranet">

<locations>

<branch vpath-regex=".*" />

</locations>

<data-type name="deptInfo" dcr-type="iwov">

<presentation>

<template name="deptInfo.tpl" extension="html">

<locations>

<branch vpath-regex=".*" preview-dir="/">

<directory dir-regex=".*" />

</branch>

</locations>

</template>

</presentation>

</data-type>

Templating Element 1

Data Category Section 2

Data Type Section 3

Presentation Template Section 4

Data Category Section 2

Data Type Section 3

Presentation Template Section 4

Template to Data
Type Mapping5

Template to Generated
File Mapping 6

Generated HTML File
Location 7
99

Mapping Users, Templates, and Content Records
<data-type name="weather" dcr-type="iwov">

 <presentation>

<template name="weather.tpl" extension="html">

<locations>

 <branch vpath-regex=".*" preview-dir="/">

<directory dir-regex=".*" />

</branch>

</locations>

</template>

</presentation>

</data-type>

</category>

<category name="internet">

<locations>

<branch vpath-regex=".*" />

</locations>

<data-type name="careers" dcr-type="iwov">

<presentation>

<template name="jobDesc.tpl" extension="html">

<locations>

<branch vpath-regex=".*" preview-dir="/">

<directory dir-regex=".*" />

</branch>

</locations>

</template>

</presentation>

</data-type>

<data-type name="auction" dcr-type="iwov">

<presentation>

<template name="auction.tpl" extension="html">

<locations>

<branch vpath-regex=".*" preview-dir="/">

<directory dir-regex=".*" />

</branch>

</locations>

</template>

</presentation>

</data-type>

</category>

</templating>
100 TeamSite Templating Developer’s Guide

Example templating.cfg File
Diagram Key

1. Templating Element: The <templating> element marks the beginning of the
templating.cfg file’s configuration information and identifies the file as a templating.cfg
file.

2. Data Category Section: The <category> element contains information specific to a data cate-
gory (intranet in this example) and makes the data category available for use by TeamSite Tem-
plating. The <category> element contains one or more <data-type> elements. A data category
must have its own <category> element in templating.cfg for TeamSite Templating to recog-
nize and use the data category. Even if a data category is located correctly in the directory structure
described on page 23, it will not be recognized by TeamSite Templating unless it is named in a
<category> element as shown here. The <category> element’s name attribute is required. You
can use the <locations> element within a <category> element to show the branches in which
that category will be available. This example shows that intranet and custom-dtd-examples
categories will be available in all branches.

3. Data Type Section: The <data-type> element contains information specific to a data type and
makes the data type available for use by TeamSite Templating. A data type must have its own
<data-type> element in templating.cfg for TeamSite Templating to recognize and use the
data type. Even if a data type is located correctly in the directory structure described on page 23, it
will not be recognized by TeamSite Templating unless it is named in a <data-type> element as
shown here. The attributes for <data-type> are name, items-per-page, and dcr-type. The
<data-type> element’s name attribute is required. The items-per-page attribute is used to
specify the number of items on each page in a data capture form. The items-per-page attribute
applies only to top-level items; therefore, a replicant with many items still displays on one page and
this attribute has no impact. The dcr-type specifies what kind of DCR to write out. The values
are xml and iwov; the default is iwov. If the value of dcr-type is xml:

• The data capture template for that data type needs to have been generated using iwdtd2sym.

• The data content records for that data type will be XML documents written according to the
DTD that the data capture template was derived from.

The <data-type> element can contain the following subelements:

• <locations>: Shows the branches in which that data type will be available.

• <presentation>: See Item 4 below.
101

Mapping Users, Templates, and Content Records
• <allowed>: Lets you set an ACL to specify which users can or cannot use a specific data type. If
<allowed> is not set, any user can use the data type (see page 60 for additional examples). The
<allowed> element can have any of the following subelements:

<cred>: Lets you name a user or role in the ACL (for example, user="joe" or
role="master").

<and>: Logical and statement for grouping ACL credentials.

<or>: Logical or statement for grouping ACL credentials.

<not>: Logical not statement for negating ACL credentials. For example, the
following allows all users except joe to use the current instance:

<allowed>

 <not>

 <cred user="joe">

 </cred>

 </not>

</allowed>

4. Presentation Template Section: The <presentation> element marks the beginning of the
section that contains subelements for presentation template mapping. See Items 5, 6, and 7 below.

5. Template to Data Type Mapping: The <template> element marks the beginning of the sec-
tion that maps a presentation template to a data type. It specifies which presentation templates are
available for use with the data type named in the <data-type> element. In the example shown
here, the deptInfo.tpl template can be used to display data content records for the deptinfo
data type. The <template> element can contain the following attributes:

• extension: Specifies the extension that will be used on any files this template generates. This
attribute is required.

• fullpage: Specifies that the generated HTML file is a full HTML page. This attribute is
optional.

• name: Specifies the presentation template’s file name in the workarea_name/
templatedata/data_category/data_type/presentation directory. This attribute is
required.
102 TeamSite Templating Developer’s Guide

Example templating.cfg File
6. Template to Generated File Mapping: The <branch> element uses extended regex syntax to
specify on which branches a presentation template can generate a file. The <branch> element can
have the following attributes:

• vpath-regex: Specifies on which branches files can be generated using this presentation
template. The example shown here (".*") specifies that all branches can have files generated by
the deptInfo.tpl presentation template.

• preview-dir: Specifies the directory (in an area of a branch) in which generated files will be
previewed in when you preview a data content record (via the TeamSite Templating Preview
button).

7. Generated HTML File Locations: The <directory> element uses regex syntax to specify
where generated HTML files based on this presentation template may be saved. This example spec-
ifies that generated HTML files based on jobDesc.tpl will reside in the current directory (.*).

The <directory dir-regex="..." /> regular expression matches a directory relative to the
user’s workarea. Because the string that is matched against the regex does not begin with a slash, it
is possible for the string to be empty (that is, when the directory in question is the top of the
workarea, then an empty string will be matched against the regex).

Setting Previewing Path Variables

The following example describes what happens when a user previews a generated HTML file in
TeamSite Templating.

If the file is specified with an absolute path (for example, href=/main/images/pixel.gif), the
browser searches the absolute path.

The way to configure TeamSite Templating so that the correct directory is searched is to set
preview-dir in the templating.cfg file to point to the directory containing the file. For
example, set the preview-dir variable to /images if pixel.gif resides in /images. Then
pixel.gif will be found and displayed during the preview.

To summarize the preview results:

• If the line href=pixel.gif appears in the presentation template and the directory containing
pixel.gif is named with the preview-dir variable in templating.cfg, pixel.gif will
be included in the preview.
103

Mapping Users, Templates, and Content Records
• If the line href=absolute_path_name/pixel.gif appears in the presentation template, the
file pixel.gif will be included in the preview.

The preview-dir variable (in the templating.cfg file) associated with each presentation
template defines the directory where the preview file will virtually exist during preview time. A
preview creates a temporary file. When a browser is opened and directed to the preview file, the
URL that the browser points to is the URL for the preview file in the directory defined in preview-
dir. During the preview, a proxy remap occurs, remapping the directory specified in the
preview-dir variable to the templatedata/iw_preview directory. In this way, a preview file
can have a virtual location other than its true location. These temporary files are deleted by the
previewing system.
104 TeamSite Templating Developer’s Guide

templating.cfg DTD
templating.cfg DTD

<!ELEMENT templating (category*) >

<!ELEMENT category (locations?,data-type*) >

 <!ATTLIST category

 name CDATA #REQUIRED

 >

<!ELEMENT data-type (locations?,allowed?,presentation?) >

 <!ATTLIST data-type

 name CDATA #REQUIRED

 items-per-page CDATA #IMPLIED

 dcr-type (iwov|xml) "iwov"

 >

<!ELEMENT presentation (template*) >

<!ELEMENT template (locations) >

 <!ATTLIST template

 name CDATA #REQUIRED

 fullpage t|f) "f"

 extension CDATA #REQUIRED

 >

<!ELEMENT locations (branch+) >

<!ELEMENT branch (directory*) >

 <!ATTLIST branch

 vpath-regex CDATA #REQUIRED

 preview-dir CDATA #IMPLIED

 >

<!-- 'branch' elements should only contain 'directory' elements

when they are within a 'template' element.

The 'preview-dir' attribute is required when the 'branch' element

is within a 'template' element. -->
105

Mapping Users, Templates, and Content Records
<!ELEMENT directory EMPTY >

 <!ATTLIST directory

 dir-regex CDATA #REQUIRED

 >

<!-- This is the same stuff as datacapture5.0.dtd: -->

<!ELEMENT allowed (cred|and|or|not) >

<!ELEMENT cred EMPTY >

 <!ATTLIST cred

 role CDATA #IMPLIED

 user CDATA #IMPLIED

 >

<!ELEMENT and (cred|and|or|not)+ >

<!ELEMENT or (cred|and|or|not)+ >

<!ELEMENT not (cred|and|or|not) >
106 TeamSite Templating Developer’s Guide

Chapter 6

Integrating Templating,
DataDeploy, and Workflow
This chapter describes how to integrate TeamSite Templating with DataDeploy and TeamSite workflow.
Integrating these components allows a content contributor to access a data capture template, create a
data content record, and deploy the data content record’s extended attributes to a database via a
TeamSite workflow job. All of these activities take place as a single, integrated sequence of steps
initiated and executed from the TeamSite GUI. The entire DataDeploy process runs as a TeamSite
workflow job, so the content contributor does not need to start DataDeploy manually, or even be
aware that DataDeploy is running.

Note: The configuration steps described in this chapter assume that TeamSite Templating is installed
and configured as described in Chapter 2, “Initial Configuration.” DataDeploy must also be
installed on your system.

Refer to the TeamSite User’s Guide for information on using templating. Refer to the TeamSite
Administration Guide for information on setting up TeamSite. Refer to the DataDeploy Administration
Guide for information on setting up and using DataDeploy.
107

Integrating Templating, DataDeploy, and Workflow
Integration Overview

The following steps show the process to create, save, submit, and deploy a data content record when
TeamSite Templating and DataDeploy are integrated.

1. In the TeamSite GUI, a content contributor requests a new data content record, chooses a data
type, and enters data in the resulting data capture form.

2. The content contributor saves the data capture form.

3. In the TeamSite GUI, the content contributor selects a data content record and clicks Submit.
Templating can be configured to automatically initiate a workflow process after a particular user
action as a convenience to the end user. This can be done in available_templates.cfg (see
“Editing available_templates.cfg to Initiate Workflows” on page 33).

4. DataDeploy is automatically signaled to perform the following functions:

– Determine which data types are affected by the data content record change.

– Read in all necessary database mapping information from DataDeploy configuration files.

– Populate the database with elements of the data content record, based on the mapping file.

– Write a log of all DataDeploy activity to the dd-home/log file.

Refer to the DataDeploy Administration Guide for additional information.

Integration Steps

The following sections describe the configuration steps you must perform on TeamSite Templating,
TeamSite workflow, and DataDeploy to integrate them for your specific templating environment.

TeamSite Templating

Install and set up TeamSite Templating as described in Chapter 2, “Initial Configuration,” which
prepares TeamSite Templating for integration with DataDeploy and TeamSite workflow. You do not
need to perform any additional tasks on TeamSite Templating to enable integration.
108 TeamSite Templating Developer’s Guide

Integration Steps
DataDeploy

A DataDeploy configuration file must be created for each type of data content record that will be
deployed. DataDeploy generates these configuration files automatically. However, the information is
provided here for your information. For example, to use DataDeploy to deploy a data content record
that is based on the data capture template /templatedata/beverages/tea/
datacapture.cfg, a DataDeploy configuration file must be created for the data type tea.
Likewise, to deploy a data content record based on /templatedata/beverages/coffee/
datacapture.cfg, a DataDeploy configuration file must be created specifically for the data type
coffee.

DataDeploy configuration files for TeamSite Templating use the following location and naming
conventions:

workarea_name/templatedata/data-category/data-type/data-type_dd.cfg

For example:

/workarea_name/templatedata/beverages/tea/tea_dd.cfg

Or, in the case of the Press Release example shown in “Data Capture Example 1” on page 42:

/workarea_name/templatedata/internet/pr/pr_dd.cfg

Refer to the information in the DataDeploy Administration Guide for information on creating the
DataDeploy configuration files and the database tables.

TeamSite Workflow

This release of TeamSite Templating supports a preconfigured templating-specific workflow template,
author_submit_dcr.wft. This file is installed by TeamSite Templating in iw-home/local/
config/wft/default. It configures the Author DCR Submit workflow job displayed in the New
job window when TeamSite Templating starts a workflow job. The files author_submit_dcr-0.ipl
and author_submit_dcr-0.ipl were installed in iw-home/local/bin during the TeamSite
Templating installation. Check available_templates.cfg to verify that the workflow is set up
and to add additional workflows. See the TeamSite Administration Guide for an example of the TeamSite
GUI’s New Job window.
109

Integrating Templating, DataDeploy, and Workflow
110 TeamSite Templating Developer’s Guide

Appendix A

Using Callouts

Three callout elements are defined in the datacapture.dtd file. The <callout> subelement is
maintained for compatibility with previous versions of TeamSite Templating. The <java-callout> is
designed for use with Java-based templates. The <cgi-callout> is designed for use with browser-
based templates.

The Java Callout

The <java-callout> subelement creates a button on the data capture form that can be
programmed to call a Java program. An interface is provided that defines the
IWDataCaptureCallout interface. You need to write a Java class that implements the interface.
Java documentation (javadoc) that describes the API is available once you install TeamSite Templating.
You can access this Javadoc through a browser at http://TeamSite-server/iw/
java-callout-api/overview-tree.html. Source code and example classes can be accessed at
iw-home/local/config/java-callout-api.

The Java callout shown in this section displays the content of a URL in a separate window. This
example demonstrates some basic mechanics of a callout, such as passing parameters, getting the name
of the field from whence the callout was called, and getting that field's value.

If your callout references a specific package in a jar format, put these jars in the same location as the
callout. If a third party library is in a jar file, you should include your callout classes in the jar file
(remembering to preserve the package structure of your classes). Remember that when referencing
the location of a Java class in the datacapture.cfg file that it points to the top level where the
package begins. Therefore, referencing the class com.interwoven.dc100.api.classname
where the location in the data capture template is /iw/java-stuff means that the file
classname.class is in iw-home/httpd/webapps/iw/java-stuff/com/interwoven/
dc100/api.
111

Using Callouts
An example of the section of the datacapture.cfg file and the Java source code file are shown
here.

The datacapture.cfg File

The following code should be added to the datacapture.cfg file to create the Java callout button:

<item name="ViewURL">

 <text size="10">

 <java-callout type='java-class' label='View URL'

 location='http://localhost/iw/java-callout-api/examples/'

 class='com.interwoven.dc100.api.ViewURLCallout'>

 <param name='URL' value='http://myServer/bazaar/baubles.html' />

 <param name='height' value='400' />

 <param name='width' value='300' />

 </java-callout>

 </text>

</item>

You must set the parameters URL, height, and width. The height and width parameters specify
the callout window's dimensions; URL specifies the URL to display in this window.

Java Source Code

The Java source code is shown in this section. In this example, the file was named
ViewURLCallout.java. The Java source code must be compiled into a Java class file named
ViewUrlCallout.class. Copy the class file into its proper home. In this example, place the file
ViewURLCallout.class into the directory <iw-home>/httpd/iw/java-callout-api/
examples/com/interwoven/dc100/api. The class file is stored in the directory that
corresponds to the location attribute of the <java-callout> element in your
datacapture.cfg file.
112 TeamSite Templating Classic Developer’s Guide

The Java Callout
//

// CLASS ViewURLCallout

// VERSION 1.0.0

// DATE March 2001

// COMPANY Interwoven

// PURPOSE Display a URL in a frame for a callout button.

// Tested with TeamSite Templating 4.5.1

// The parameters -- URL, height, width -- should be

// defined in your datacapture.cfg file.

//

// Note: To make the URL a bit more dynamic, you

// could use the value of the datacapture

// field as a parameter to a URL which uses

// it to generate a page (e.g., a Perl CGI

// script that looks up the value in a

// database and creates a product info page

// complete with images [see code below]).

//

//

package com.interwoven.dc100.api;

import java.awt.*;

import java.awt.event.*;

import javax.swing.JFrame;

import javax.swing.JEditorPane;

import javax.swing.JScrollPane;

import java.io.*;

import java.net.URL;

import java.util.Enumeration;

public class ViewURLCallout

 implements IWDataCaptureCallout

{

 String fieldName; // Name of the DCT item

 String fieldValue; // Value of the DCT field

 Integer width; // width of callout frame

 Integer height; // height of callout frame

 String URLstring; // URL to display in callout

 JEditorPane editorPane;
113

Using Callouts
 public void setParams(IWDataCaptureCalloutParams params)

 {

// Parameters defined in datacapture.cfg's <param> tags.

width = width.valueOf(params.getParameter("width"));

height = height.valueOf(params.getParameter("height"));

URLstring = params.getParameter("URL");

 }

 public void start(IWDataCaptureRootNode root,

 IWDataCaptureObject object, JFrame DCframe)

 {

// Get name of datacapture field and its value.

try{

 fieldName = object.getUniqueName();

 fieldValue = getFirstValue((IWDataCaptureModifiableLeaf) object);

}catch(IWDataCaptureException iwe){}

JFrame frame = new JFrame();

frame.getContentPane().setLayout(new BorderLayout());

// Create an editor pane.

JEditorPane editorPane = createEditorPane();

// Put the editor pane into a Scroll Pane.

JScrollPane urlScrollPane = new JScrollPane(editorPane);

urlScrollPane.setPreferredSize(new Dimension(width.intValue(),

 height.intValue()));

//frame.setTitle("URL: " + URLstring + " field name: " + fieldName +

// " field value: " + fieldValue);

frame.setTitle(URLstring);

 frame.getContentPane().add(urlScrollPane);

frame.pack();

frame.setVisible(true);

return;

 }
114 TeamSite Templating Classic Developer’s Guide

The Java Callout
 protected String getFirstValue(IWDataCaptureModifiableLeaf leaf)

 { // Return the first value of the field, if any.

Enumeration values = leaf.getValues();

if (values.hasMoreElements()) {

 String value = (String) values.nextElement();

 return value;

}

return "";

 }

 private JEditorPane createEditorPane() {

 JEditorPane editorPane = new JEditorPane();

 editorPane.setEditable(false);

 try {

 URL theURL = new URL(URLstring);

 // A more dynamic URL, using a query string.

 // URLstring = "http://myServer/scripts/productInfo.ipl";

 // URL theURL = new URL(URLstring + "?product=" + fieldValue);

 displayURL(theURL, editorPane);

 } catch (Exception e) {

 System.err.println("Couldn't create URL: " + URLstring);

 }

 return editorPane;

 }

 private void displayURL(URL url, JEditorPane editorPane) {

 try {

 editorPane.setPage(url);

 } catch (IOException e) {

 System.err.println("Attempted to read a bad URL: " + url);

 }

 }

}

115

Using Callouts
The CGI Callout

This section describes an example of using the <cgi-callout> element. It shows an example of the
data capture record that contains a callout button. It also shows the datacapture.cfg and
example_datacapture_callout.ipl files that define and call the CGI.

The <cgi-callout> subelement can be used with the <browser>, <checkbox>, <hidden>,
<radio>, <readonly>, <text>, <textarea>, and <select> elements. Refer to the Chapter 3,
“Setting Up Data Capture Templates,” for information.

The Data Capture Form

The following data capture form shows the CGI callout button, labeled Weather Patterns.

Data Capture Form with a Callout for the Weather Patterns Item
116 TeamSite Templating Classic Developer’s Guide

The CGI Callout
When a user clicks Weather Patterns, a dialog box displays so the user can select a value.

Selecting a Value for Weather Patterns Using the Data Capture Callout

In this example, the user selects “hot!” from the menu and clicks OK. This value is reflected in the data
capture form.

Data Capture Form with Announcement Field Reflecting the Value Selected using the Weather Patterns Button
117

Using Callouts
The datacapture.cfg.example File

This section shows the intranet/weather/datacapture.cfg.example file that created the
data capture form on page 116. The file contains the entries you need to use the callout CGI capability.
To use this file to demonstrate the example, rename the file datacapture.cfg.

The following labels and value are included in the options.txt file described in the next section.
These values are in the pull-down for the user selection in the Weather Patterns field.

hot!,hot!

sunny,sunny

cloudy,cloudy

partly cloudy,partly cloudy

drizzle,drizzle

showers,showers

rain,rain

sleet,sleet

snow,snow

<?xml version="1.0" standalone="no"?>

<!DOCTYPE datacapture SYSTEM "datacapture5.0.dtd">

<data-capture-requirements type="metadata">

<!-- data-capture-requirements elements contain area elements -->

<ruleset name="Interwoven Information Page">

<description>

Capture announcement to pair with date,weather,stock

</description>

<item name="Announcement">

<textarea cols="15" rows="10" required="t">

<cgi-callout url="/iw-bin/example_datacapture_callout.cgi/

options.txt" label="Weather Patterns" window-features="width=320,

height=200,resizable=yes,toolbar=no,scrollbars=yes"/>

</textarea>

</item>

</ruleset>

</data-capture-requirements>
118 TeamSite Templating Classic Developer’s Guide

The CGI Callout
The example_datacapture_callout.ipl File

This section contains the example_datacapture_callout.ipl file. This file operates as a data
capture callout CGI program to populate a data capture item with a selection from a dynamically
generated list of options that are read from a flat file. This file does not need to be modified for the
demonstration. You can rename and modify it as needed for customization.

The program reads a flat file of selection options and presents them to the user. The selected option is
used to populate the data capture item that launched the callout. The data capture item must be text
or textarea for this example.

The flat file is specified in the PATH_INFO part of the URL. The CGI is designed to look for the flat
file (options.txt) in iw-home/local/config. The following URL specifies the flat file:

 /iw-bin/iw_cgi_wrapper.cgi/example_datacapture_callout.ipl/options.txt

The format of each line in the flat file is:

 value,label

An empty label results in a label identical to the value.

These following file contents would result in an HTML user interface containing the HTML shown
below the file contents:

Flat file contents in the value, label format:

P,Paperback

H,Hardback

N,No back

XYZ,

HTML file:

<SELECT>

 <OPTION VALUE="P">Paperback</OPTION>

 <OPTION VALUE="H">Hardback</OPTION>

 <OPTION VALUE="N">No back</OPTION>

 <OPTION VALUE="XYZ">XYZ</OPTION>

</SELECT>
119

Using Callouts
To ensure that any data transfer from the callout window to the data capture form is saved to the
internal data structure, the Javascript in the callout window should make a call to
datacapture.refreshForm(), a function located in the top level of the data capture window.
For example, if the function is being called from the callout window that was opened by the data
capture form (that is, not in a child window of the callout window), the call would be:

opener.top.datacapture.refreshForm()

This function takes no arguments and should be called before the callout window is dismissed. One
way to do this is to put this call in the onclick handler of the OK button, as shown in this example.
Another way is to put this call in the onUnload handler of the callout body so get called when the
user dismisses the window. This call could be expensive so it should only be done sparingly.

Data Capture Callout CGIs

These standard name-value pairs will be POSTed to the callout CGI. These name-value pairs are:

• area_path: The vpath to the current workarea. Unlike the custom menu item's area_path, this
is a vpath rather than a file system path.

• iw_callback_var: The name of the form element that launched this callout.

• iw_dcr_path: A file system path to the data content record being edited.

• iw_dcr_type: The type of the data content record being edited.

• iw_dcr_vpath: A vpath to the data content record being edited.

• iw_field_type: The type of form element that launched this callout.

• iw_form_name: The name of the form that launched this callout. This is the full name relative to
the callout window (that is, window.opener.top.formframe.document.dcreditForm).

• iw_item_description: The description of the data capture item that launched this callout.

• iw_item_name: The name of the data capture item that launched this callout.

• iw_item_value: The current value of the data capture item that launched this callout. This only
applies for text and textarea items. Values of other types of form instances (check boxes, select
menus, etc.) can be obtained through JavaScript.

• iw_object_name: The name of the data content record being edited.

• session: The TeamSite session string for the current session. This is the same as the custom menu
item's session.
120 TeamSite Templating Classic Developer’s Guide

The CGI Callout
• task_id: The task ID for the current workflow task, if the data capture form was a cgitask of a
workflow.

• user_name: The user name of the current TeamSite user. This is the same as the custom menu
item's user_name.

• user_role: The role of the current TeamSite user. This is the same as the custom menu item's
user_role.
121

Using Callouts
example_datacapture_callout.ipl

use TeamSite::CGI_lite;

use TeamSite::Config;

$|=1;

my $cgi = TeamSite::CGI_lite->new();

$cgi->parse_data();

my $form_name = $cgi->{'form'}{'iw_form_name'};

my $element_name = $cgi->{'form'}{'iw_callback_var'};

my $user_name = $cgi->{'form'}{'user_name'};

my $item_name = $cgi->{'form'}{'iw_item_name'};

my $item_description = $cgi->{'form'}{'iw_item_description'};

my $dcr_name = $cgi->{'form'}{'iw_object_name'};

my $flat_file = $ENV{'PATH_INFO'};

if ($flat_file =~ m!^.*/([^/]+)$!) {

 $flat_file = $1;

}

my @options = parse_flat_file(make_full_filename($flat_file));

if (! @options)

{

 error_message('No available selection options were found.');

 exit 1;

}

print_ui(@options);

exit 0;

sub make_full_filename {

 my ($filename) = @_;

 my $iw_home = TeamSite::Config::iwgethome();

 my $full_filename = $iw_home . "/local/config/" . $filename;

 return $full_filename;

}

122 TeamSite Templating Classic Developer’s Guide

The CGI Callout
sub parse_flat_file {

 my ($filename) = @_;

 my @options;

 if ((-f $filename) && (open(FILE, $filename)))

 {

 while (<FILE>)

 {

 my $line = $_;

 if ($line =~ /^([^,]*),(.*)$/)

 {

 my %hash = ('value' => $1, 'label' => $2);

 push(@options, \%hash);

 }

 }

 }

 close FILE;

 return @options;

}

sub print_ui {

 my (@options) = @_;

 print_header();2

 print <<"END";

<FORM NAME="callout_form">

<TABLE BORDER="0" CELLPADDING="0" ALIGN="CENTER">

<TR>

<TD VALIGN="TOP" WIDTH="150">

$item_name

$item_description

</TD>

<TD VALIGN="TOP">

<SELECT NAME="selection_list">

END
123

Using Callouts
 foreach my $hash (@options)

 {

 my $value = $hash->{'value'};

 my $label = $hash->{'label'};

 if ($label eq '')

 {

 $label = $value;

 }

 print "<OPTION VALUE=\"$value\">$label</OPTION>\n";

 }

print <<"END";

</SELECT>

</TD>

</TR>

</TABLE>

<CENTER>

<INPUT TYPE="BUTTON" VALUE="OK" onClick="handle_selection()">

<INPUT TYPE="BUTTON" VALUE="Cancel" onClick="self.close()">

</CENTER>

</FORM>

END

 print_footer();

 return;

}

sub error_message {

 my (@msgs) = @_;

 print_header();

 foreach my $message (@msgs)

 {

 print $message;

 }

 print <<"END";
124 TeamSite Templating Classic Developer’s Guide

The CGI Callout
<CENTER>

<FORM>

<INPUT TYPE="BUTTON" VALUE="OK" onClick="self.close()">

</FORM>

</CENTER>

END

 print_footer();

 return;

}

sub print_header {

 print<<"END";

Content-type: text/html

<HTML>

<HEAD>

<TITLE>Example Datacapture Callout</TITLE>

<SCRIPT LANGUAGE="JavaScript">

<!--

function set_datacapture_item_value(selectedValue)

{

 if ((window.opener == null) ||

 (window.opener.closed))

 {

 return false;

 }

 var calloutForm = eval($form_name);

 if (!calloutForm)

 {

 return false;

 }
125

Using Callouts
 var calloutElementFound = false;

 for (i = 0 ; i < calloutForm.elements.length ; i++)

 {

 if (calloutForm.elements[i].name == '$element_name')

 {

 calloutForm.elements[i].value = selectedValue;

 calloutElementFound = true;

 break;

 }

 }

 if (!calloutElementFound)

 {

 return false;

 }

 return true;

}

function handle_selection()

{

 if (callback())

 {

 if(opener.top.datacapture) {

 opener.top.datacapture.refreshForm();

 }

 self.close();

 }

 else

 {

 alert('Please make a selection.');

 }

}

126 TeamSite Templating Classic Developer’s Guide

The CGI Callout
function callback()

{

 var optionsArray = document.callout_form.selection_list.options;

 for (i = 0 ; i < optionsArray.length ; i++)

 {

 if (optionsArray[i].selected)

 {

 if (!set_datacapture_item_value(optionsArray[i].value))

 {

 alert('Fatal callout error. Did you close the datacapture

window?');

 }

 return true;

 }

 }

 // did not find a selected option!

 return false;

}

// -->

</SCRIPT>

</HEAD>

<BODY BGCOLOR="#C0C0C0">

<TABLE BORDER=0 cellpadding=0 cellspacing=0 WIDTH=100%>

 <TR>

 <TD ALIGN="LEFT">Example Datacapture Callout

Name: $dcr_name
</TD>

 <TD ALIGN="RIGHT" VALIGN="TOP"><IMG SRC="/iw-icons/

tslogosmall.gif"></TD>

 </TR>

</TABLE>

END

 return;

}

127

Using Callouts
sub print_footer {
 print <<"END";
</BODY>
</HTML>
END
 return;
}

128 TeamSite Templating Classic Developer’s Guide

Appendix B

Command-Line Tools

You can generate or regenerate HTML files from the command line as well as from the TeamSite
Templating GUI. Refer to the TeamSite Templating User’s Guide for information on the GUI.

Both iwgen and iwregen use an underlying low-level presentation template compiler, called
iwpt_compile.ipl. This compiler is available for your use and is beneficial when you develop,
test, and debug presentation templates.

The presentation template compiler, iwpt_compile.ipl, is a command-line tool that uses the data
content records, Perl code, and iw_xml tags to produce output. You can use the presentation
template compiler when you develop new tags.

The iwdtd2sym CLT is used to create data capture templates from industry-standard DTDs. Refer to
Appendix C, “Creating DCTs from DTDs” for examples of using this CLT.

The iwxml_validate.ipl CLT validates XML files against a DTD.

The upgrade_dct_cfg.ipl CLT upgrades datacapture.cfg files from regex5 basic regular
expression syntax to extended regular expressions.
129

Command-Line Tools
iwdctacleval
Alters a data capture template to have only one data capture instance per item, according to ACLs in
the data capture template (DCT). It evaluates ACLs (set with <allowed> tags) inside DCTs. It also
runs server-side callouts. The templating Java client receives a DCT from the TeamSite server. The
document it receives has been through this ACL evaluation process and the server-side inline callout
substitutions. This CLT is a debugging tool that lets you see the exact DCT that the client sees, which
is not the exact DCT that is in the user's workarea.

Usage:

iwdctacleval [-h|-v] [-c] [-e] -u username -r userrole -w workarea dct

Options:

-h Displays this usage message.

-v Displays version number.

-c Displays the Java class path.

-e Sends errors to STDOUT.

-u username Specifies the name of the current data capture end
user.

-r userrole Specifies the role of the current data capture end user.

-w workarea Specifies a vpath to the current workarea.

dct Specifies a file-system path to the current data capture
template.

Example:
A data capture template that contains the following section is used:

<item name="just chris and andre">

 <textarea><allowed><cred user="chris" /></allowed></textarea>

 <text><allowed><cred user="andre" /></allowed></text>

</item>
130 TeamSite Templating Developer’s Guide

The CLT:

iwdctacleval -u chris -r editor /default/main/WORKAREA/chris /path_to/

datacapture.cfg

issues the following results for this section:

<item name="just chris and andre">

 <textarea><allowed><cred user="chris" /></allowed></textarea>

</item>

However, if you issue the CLT as follows:

iwdctacleval -u andre -r editor /default/main/WORKAREA/chris /path_to/

datacapture.cfg

the following results are obtained for this section:

<item name="just chris and andre">

 <text><allowed><cred user="andre" /></allowed></text>

</item>
131

Command-Line Tools
iwdtd2sym
Converts an XML DTD into a skeletal data capture symbol table configuration file. This output must
be manually modified before further use. The symbol table configuration file will be written to
standard output.

Usage:

iwdtd2sym [-h|-v] [-c] [-r ruleset-name] [-i itemref-name] dtd-location

 -h Displays this usage information.

-v Displays this command's version number.

-c Displays the Java class path.

-r ruleset-name Specifies the name of the ruleset in the outputted
symbol table configuration file. Default is TeamSite
Templating.

-i itemref-name Specifies the name of the itemref in the ruleset in the
outputted symbol table configuration file. Default is
the name of the first element type declared in the
DTD.

dtd-location Specifies a system literal, which is a URI referencing
an XML DTD. Example URIs are:
document.dtd (a file system path)
../path/to/document.dtd (a file system path)
http://www.flixml.org/flixml/flixml.dtd
(a URL)

Example:
The following line converts the simple.dtd file in and outputs it to iwdtd2sym.out.

iwdtd2sym simple.dtd > iwdtd2sym.out
132 TeamSite Templating Developer’s Guide

iwgen
Generates an HTML file based on a presentation template and a data content record.

Usage:

iwgen [-h|-v] -t templatevpath -r recordvpath vpath

Options:

-h Displays this usage message.

-v Displays version number.

-t templatevpath Specifies a path to a TeamSite Templating presentation
template, where templatevpath is either a relative
vpath or an archive-rooted vpath. Server-rooted
vpaths are not supported.

 -r recordvpath Specifies a path to a TeamSite Templating data content
record, where recordvpath is either a relative vpath
or an archive-rooted vpath. Server-rooted vpaths are
not supported.

 vpath Specifies a path to write the TeamSite Templating
generated file, where vpath is either a relative vpath
or an archive-rooted vpath. Server-rooted vpaths are
not supported.

-e encoding Specifies the encoding to be used for the generated
file.

Example:
The following example generates an HTML file based on the presentation template auction.tpl
and the data content record june_items. The HTML file is written to the file
june_display.html in the current workarea. The current working directory is the user’s
workarea. You should enter this as a single line.

% iwgen -t templatedata/internet/auction/presentation/auction.tpl
templatedata/internet/auction/data/june_items june_display.html
133

Command-Line Tools
iwprop
Reads or modifies the templating preference in the entity database.

Usage:
To set templating preference:

iwprop -user username -s -key teamsite_templating/config/use_java_ui

-value true|false

To get the value of templating preference.

iwprop -user username -g -key teamsite_templating/config/use_java_ui

The username variable is the userid. If on a Windows platform, it has to include domain name.

The key with which the templating preference is stored is
teamsite_templating/config/use_java_ui.

Templating interface preference is role insensitive; that is, a user's templating interface preference is
used across the roles. Regardless of the logon role, the same preference applies for that user.
134 TeamSite Templating Developer’s Guide

iwpt_compile.ipl
Invokes the command-line presentation template compiler to compile presentation templates into
output formats such as HTML, jsp, and asp. By default, the output encoding of characters is UTF-8,
but it can also be ISO-8859-1, if specified with the -oenc ISO-8859-1 flag.

By default, the output of this program is the final result of compiling a template. If the -ofile
filename flag is used, this output is sent to filename, otherwise it is printed to STDOUT.

If the -ocode filename.ipl flag is used, instead of writing the normal result of the compilation
process out to file, a stand-alone program that generates the output is written. This is useful when
debugging presentation templates and custom <iw_xml>-derived tags).

Usage:

iwpt_compile.ipl -pt filename [-ofile filename] [-ocode filename]
[-oenc encoding] [-smartwrite] [tag-specific flags]

iwpt_compile.ipl -v | -h

Arguments:

-v Prints the version number on STDOUT.

-h Prints a help message.

-pt filename Use the filename presentation template.

-ofile filename Save the output to filename instead of STDOUT.

-ocode filename.ipl Writes to a stand-alone program named
filename.ipl that generates the output.

-oenc encoding Specifies output encoding, which is UTF-8 by default.
Specify -oenc on the XML declaration line of the
presentation template.

-smartwrite Specifies -ofile only overwrites filename if it is
different.
135

Command-Line Tools
Tag-specific flags:

-iw_pt-dcr The file names that follow this iwpt_compile.ipl
flag must be a valid data content record. iw_pt reads
in the data content record and makes its values
available through iw_value.

-iw_pt-arg The key, value pairs that follow this flag are used to
initialize the presentation template arguments within
the template. This is useful when debugging a
component that normally gets its %iw_arg initialized
by the %iw_param of its enclosing template’s
<iw_include> tag.

-iw_include-location Mandatory when the mode attribute of the
iw_include tag is docroot. The file path is
prepended to the file name provided in the file
attribute to form a complete file path (used to
virtualize the inclusion).

Example 1

This compilation line uses iw_pt-dcr to obtain data from a single data content record named
moo.dcr.

iwpt_compile.ipl -pt -iw_pt moo.tpl -iw_pt-dcr moo.dcr cow.dcr

 -iw_include-location . -ofile moocow.html

Example 2

This example shows output that needs to be in UTF-8 format, and the output file should not be
overwritten if the contents have not changed.

iwpt_compile.ipl -pt -iw_pt moo.tpl -iw_pt-dcr moo.dcr cow.dcr

 -smartwrite -iw_include-location . -ofile moocow.html -oenc UTF-8
136 TeamSite Templating Developer’s Guide

Example 3

This example shows the use of iwpt_compile for debugging.

iwpt_compile.ipl -pt -iw_pt moo.tpl -iw_pt-dcr moo.dcr cow.dcr

 -iw_include-location . -ocode xxx.ipl ; xxx.ipl

The limitations to using iwpt_compile.ipl directly are:

• Output pages are not associated with data content records.

• The output pages are editable pages (using SmartContext Editing), but they cannot be accessed
through the TeamSite Templating GUI.

When you call the presentation template compiler, you can specify command-line arguments and
flags. Command-line flags are specific to and used by various iw_xml tags rather than being used
directly by the compiler. They are specified as part of the iwpt_compile.ipl command.

When a presentation template is processed from the presentation template compiler, the following
steps are performed:

1. The presentation template is compiled using the command-line utility iwpt_compile.ipl. It
may use zero or one XML-based data content records.

2. An XML parser reads the presentation template. As the parser reads, it encounters XML tags.

3. A tag object of the appropriate type is created and the parser calls that object's member functions,
passing it relevant information, such as attribute list key, value data.

4. The tag object's member function emits a snippet of Perl.

5. Collectively, all the snippets of Perl that these tag object member functions emit as the parser scans
the template form a program.

6. This program runs, and the result is the document (typically HTML) that merges content with
look-and-feel instructions.
137

Command-Line Tools
iwregen
Regenerates an HTML file that was generated by TeamSite Templating based on a presentation
template and a data content record. Use this command to update a generated HTML file if either or
both the presentation template and the data content record that the file is based on have been
modified.

Usage:

iwregen [-h|-v] vpath

Options:

-h Displays this usage message.

-v Displays version number.

vpath Specifies the path to the file that will be regenerated,
where vpath is either a relative vpath or an archive-
rooted vpath. Server-rooted vpaths are not supported.

Example:
The following example regenerates the HTML file june_display.html, which resides in the
current workarea.

% iwregen june_display.html
138 TeamSite Templating Developer’s Guide

iwxml_validate.ipl
Validates a list of XML files against a DTD (and can also check to see if the XML files are well-
formed).

Usage:

 iwxml_validate.ipl [-max_errors n] [-d level] [-well] x.xml [y.xml [...]]

 iwxml_validate.ipl -h |-v

-max_errors n Displays maximum of n errors before quitting
XML validation on the current file. The default is to
report all errors.

 -d level Sets debug verbosity level (where level is 0-3); the
default debug verbosity level is 2.

 -well Checks to see if XML is well-formed, but does not
validate.

-h Displays this usage information.

-v Displays this command's version number.

Debug
level Displays
0 Nothing
1 A terse message on failure
2 Parsing warnings and failures
3 Messages on success and failure
139

Command-Line Tools
Example:
 Given an XML file (for example, x.xml):

 <?xml version="1.0" standalone="no"?>

 <!DOCTYPE a SYSTEM "x.dtd">

 <a>

 <b p='c'>this

 <b p='a'>is

 <b p='zzzzzz'>a valid

 <b p='b'>xml file

and a DTD (for example, x.dtd):

 <!ELEMENT a (b*)>

 <!ELEMENT b (#PCDATA)>

 <!ATTLIST b p CDATA #REQUIRED>

the command line:

 iwxml_validate.ipl x.xml

 will return with no output and an exit status indicating success since x.xml is a valid XML file.
140 TeamSite Templating Developer’s Guide

upgrade_dct_cfg.ipl
The upgrade_dct_cfg.ipl CLT upgrades datacapture.cfg files from regex5 basic regular
expression syntax to extended regular expression syntax. The meanings of the original basic regular
expressions are preserved, but the extended regex grammar provides more expressive power for
validating user input.

This upgrade is required when moving from the browser-based data capture interface of TeamSite
Templating Classic 4.5 or from any previous version of TeamSite Templating that uses regular
expression syntax. Only validation-regex attributes containing the following characters are affected:
+ ? | ()

CAUTION: You should not run this utility more than once on a particular file (see -force for
details).

Usage:

upgrade_dct_cfg.ipl [-log file] [-inplace] [-n] [-d verbosity]

[-no_iwcfg_update] [-force] [-no_staging_update]

[directory_name|file_name]+

upgrade_dct_cfg.ipl -v |-h

-log file The name of the file to which log information is sent.
By default, log information is printed on STDOUT.
For example, if -log xxx is used, all log information
is sent to the file named xxx.

-inplace Do not make backup copies of the
datacapture.cfg files; without this switch,
datacapture.cfg.backup files are placed in the
same directories as the datacapture.cfg files.

 -n Do not write or modify any datacapture.cfg files;
just determine which ones require an upgrade. Do not
modify /etc/iw.cfg.
141

Command-Line Tools
 -no_iwcfg_update Do not modify anything in iw.cfg. By default,
running this utility sets
use_extended_regex5=true within the
[teamsite_templating] section of
/etc/iw.cfg.

 -force This utility should run at most once on the root of
TeamSite branching structure (for example, /iwmnt)
since the conversion from basic regexes to extended
regexes is one-way. If
use_extended_regex5=true is already set within
the [teamsite_templating] section of iw.cfg,
it is assumed that no further conversion of
datacapture.cfg files is required, and this utility
will exit with a diagnostic message. To override this
behavior, use the -force flag.

 -no_staging_update Do not attempt to upgrade datacapture.cfg files
that are already in the staging area. By default,
datacapture.cfg files in the staging area are
upgraded by creating a temporary workarea, doing an
update of the relevant files, and then automatically
checking in the changes.

 -d verbosity Set the debug verbosity level:

-h Displays this usage information.

-v Displays this command's version number.

Verbosity Displays
0 Nothing
1 Only files requiring upgrade
2 Changed and unchanged files (default)
3 Information from Level 2 plus low-level

trace messages
4 Information from Level 3 with extensive

trace messages
142 TeamSite Templating Developer’s Guide

Examples:

upgrade_dct_cfg.ipl $iwmount

Runs the utility on all the templating files it finds.

upgrade_dct_cfg.ipl -force -no_staging_area

y:\default\main\www\WORKAREA\work

Upgrades the templating files in the named workarea. The -force option is specified to override the
use_extended_regex5=true statement set within iw.cfg. The -no_staging_area option is
specified to save time since staging area files are read-only files.

Background:
In basic regular expressions (the old default):

In extended regular expressions:

In extended regular expressions, if you wish to use a literal +,|,(,),{, or } character in your
regex, you must escape it with a \. For example: The basic validation regex ^\(hi\)\{2,5\} is
written as ^(hi){2,5} after the conversion to extended regular expressions.

Character Meaning
+ a single instance of the '+' character
? a single instance of the '?' character
| a single instance of the '|' character
\(and \) used for grouping
\{ and \} used for expressing ranges of instances

Character Meaning
+ one or more instance
? zero or one instance
| either the left or the right hand alternative
 (and) used for grouping
{ and } used for expressing ranges of instances
143

Command-Line Tools
A basic regex like you+me must now be expressed as you\+me because + means one or more.
Therefore, the extended regex you+me matches strings like youme, youume, youuume, etc.

You should probably revisit your validation regexes, since the extended regular expressions now
being used allow for stricter input checking.
144 TeamSite Templating Developer’s Guide

Appendix C

Creating DCTs from DTDs

You can create datacapture.cfg files that define data capture templates (DCTs) from industry-
standard XML DTDs. These data capture templates display as data capture forms in TeamSite
Templating. A list of the steps to convert DTDs is outlined here. Refer to the remainder of this
appendix for details and examples of the files at each step in the processing of creating the
datacapture.cfg file.

1. Verify that the DTD is correct.

2. Run the iwdtd2sym CLT to convert the DTD.

3. Copy the output from the iwdtd2sym CLT to symbol-table.cfg.

4. Optionally modify the symbol-table.cfg to change the name attribute of the itemref sub-
element of the <ruleset>, and save the file as datacapture.cfg.

5. Make any additional edits to add items such as labels and descriptions to <items> and save the file.

6. Identify the new datacapture.cfg file in the templating.cfg file.

Save all your intermediate output files along with the DTD and the final datacapture.cfg file. It is
recommended that these files be versioned in TeamSite.
145

Creating DCTs from DTDs
Running the CLT on the DTD File

The following file is a sample DTD, named simple.dtd.

Run the iwdtd2sym CLT on the DTD, specifying the complete path to the DTD, to create the file
that begins on the next page by changing to the directory containing the DTD:

cd Y:\default\main\WORKAREA\chris\templatedata\internet\simple-example

(the reference to the Y: drive is not needed for UNIX platforms) and issuing the command:

iwdtd2sym simple.dtd > iwdtd2sym.out

Refer to the Appendix B, “Command-Line Tools” for additional details on iwdtd2sym.

<!-- This is a simple example DTD.

 It is a "Hello, world!" type of DTD.

-->

<!ELEMENT simple-example (message)>

 <!ATTLIST simple-example

 color (red|blue|green) #IMPLIED

 >

<!ELEMENT message (#PCDATA)>
146 TeamSite Templating Developer’s Guide

The datacapture.cfg File
The datacapture.cfg File

The following file is the output from the iwdtd2sym CLT (iwdtd2sym.out), which has been
copied to a file named datacapture.cfg and then edited.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE data-capture-requirements SYSTEM "datacapture5.0.dtd">

<data-capture-requirements dtd-system-identifier="simple.dtd" name=""

type="content">

 <symbol-table>

 <symbol name="simple-example">

 <container combination="and" hide-name="f" name="simple-example">

 <itemref name="{iw_attributes}"/>

 <container combination="and" hide-name="t"

 name="{iw_sub_elements}[0]">

 <label>XML sub-elements</label>

 <itemref name="message"/>

 </container>

 </container>

 </symbol>

 <symbol regex="^(.*/)?simple-example/{iw_attributes}$">

 <container combination="and" hide-name="t"

 name="{iw_attributes}">

 <item name="color">

 <select multiple="f" required="f" size="0" width="0">

 <option label="red" selected="f" value="red"/>

 <option label="blue" selected="f" value="blue"/>

 <option label="green" selected="f" value="green"/>

 </select>

 </item>

 </container>

 </symbol>

Reference to simple.dtd
maintained. 1

XML elements entered as
symbols. 2

A <container> contains an
<itemref>. 3

A set of attributes also
become a <symbol>. 4

The color attribute. 5
147

Creating DCTs from DTDs

 <symbol name="message">

 <container combination="and" hide-name="f" name="message">

 <container combination="and" hide-name="t"

 name="{iw_sub_elements}[0]">

 <label>XML sub-elements</label>

 <item name="#PCDATA">

 <textarea cols="0" required="f" rows="0" rtf="f"

 wrap="off"/>

 </item>

 </container>

 </container>

 </symbol>

 </symbol-table>

 <ruleset name="This is my only rule">

 <itemref name="simple-example"/>

 </ruleset>

</data-capture-requirements>

The message element as a
#PCDATA item. 6

Editing the ruleset name. 7
148 TeamSite Templating Developer’s Guide

The datacapture.cfg File
Diagram Key

1. This file maintained a reference to the DTD from which it originated, in the dtd-system-
identifier attribute of the data-capture-requirements element.

2. This file was generated directly from an industry-standard XML DTD. Each XML element
becomes a <symbol> element in the <symbol-table>.

3. Every element type declared in the DTD is represented in its <symbol> as a <container>. A
<container> that represents an XML element type will contain an <itemref> element for the
element type's attributes, if any. A <container> that represents an XML element type will con-
tain another <container> for its subelements. A <container> that represents a set of the sub-
elements of an XML element type will contain an <itemref> reference for each subelement type
it refers to. This XML element type (simple-example) has a simple content specification
(message), so there is just one <itemref>.

4. The set of attributes for each element type also becomes a <symbol>.

5. The set of attributes of an element type is represented in its <symbol> as a <container>. There
is only one attribute, color. Because it was an enumerated attribute, it is represented here by a
<select> element.

6. Here is the message element type. Its content specification was also simple: #PCDATA. A charac-
ter data reference in the DTD is transformed into a data capture <item> named #PCDATA.

7. The name attribute of the itemref subelement of the <ruleset> defaults to the name of the
first element type declared in the DTD. The ruleset contains a single <itemref>. The itemref
name defaults to the symbol name. This <itemref> references the outermost element of the
XML documents that will be generated as DCRs. In this example, the ruleset name was edited.

You may manually add items such as labels and descriptions to this file. For examples, you may want
to add <label> and <description> elements to <items> and <containers>, and to specify
<min> and <max> values in a <replicant> element. You can also modify instances.
149

Creating DCTs from DTDs
Unsupported DTD Features

A few features in DTDs are not supported by the CLTs and the conversion process:

• An element <section> that can legally, according to the DTD, contain another <section>
element is not supported to an arbitrary depth. The data capture template author must decide the
depth to which an element can recursively contain elements of the same type. This is done with a
regex on the <symbol> element.

An example of this section of a DTD is:

<!ELEMENT body (section)*>

<!ELEMENT section (title|paragraph|sub-section)*>

<!ELEMENT subsection (section)*>

...

The following is an example of a regex that captures a <section> element with another
<section> element:

<symbol regex="^(.*/)?section/(.*/)?section$">

The following is an example of a regex that captures a <section> element with another
<section> element within another <section> element:

<symbol regex="^(.*/)?section/(.*/)?section/(.*/)?section$">

The first regex would catch a two-deep nesting level (anything greater than or equal to two), and
the second regex would catch any nesting level 3 or greater. The regex <symbol
name="section"> would catch all levels.

Therefore, these symbols need to be ordered in the symbol-table by depth; for example:

 <symbol regex="^(.*/)?section/(.*/)?section/(.*/)?section$">

 ...

 </symbol>

 <symbol regex="^(.*/)?section/(.*/)?section$">

 ...

 </symbol>

 <symbol name="section">

 ...

 </symbol>
150 TeamSite Templating Developer’s Guide

Unsupported DTD Features
• The validity constraints for the ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN, and
NMTOKENS attribute types are not enforced.

For an explanation of the validity constraints, refer to section 3.3.1 of the XML 1.0 specification,
located at http://www.w3.org/TR/1998/REC-xml-19980210.
151

Creating DCTs from DTDs
152 TeamSite Templating Developer’s Guide

Appendix D

Internationalization

Data capture templates can include multi-byte text (in field names and field descriptions). Also, this
multi-byte text can be in an encoding other than UTF-8. UTF-8 encoded data capture templates that
include multi-byte text are processed correctly.

The character encoding of data capture templates can be in any encoding that the Xerces XML parser
can parse. These are:

• UTF-8 (Multi-Octet Unicode)

• ISO-8859-1 (Western European)

• ISO-8859-2

• ISO-8859-3

• ISO-8859-4

• ISO-8859-5

• ISO-8859-6

• ISO-8859-7

• ISO-8859-8

• ISO-8859-9

• gb2312 (Simplified Chinese)

• EUC-JP (Japanese - Extended Unix Code)

• iso-2022-jp (Japanese - 7 bit encoding)

• Shift-JIS (Japanese - Most common in Japan)

• Big5 (Traditional Chinese)

• euc-kr (Korean - Extended Unix Code)

• koi8-r (Russian)

• ebcdic family of encodings
153

Internationalization
Note: Interwoven has certified data capture templates encoded in ISO-8859-1, UTF-8, Shift-JIS,
and EUC-JP. The other encodings should work, but they have not been certified.

These encoding names need to be used literally in XML files (datacapture.cfg). For example, to
include Shift-JIS text in the datacapture.cfg file, the xml header should be:

<?xml version="1.0" encoding="Shift-JIS" standalone="no"?>

The following are incorrect specifications: encoding="SJIS", encoding="shift-jis", or
encoding="CP932". Use encoding="Shift_JIS".

Limitations

Data capture templates can be encoded in non-UTF-8 encoding if these data capture templates are not
used by DataDeploy in DAS mode. DataDeploy in DAS mode parses data capture templates to
generate column names in dd.cfg (DataDeploy configuration file). DataDeploy's XML parser is
limited to parsing two encoding sets: UTF-8 and ISO-8859-1 encoded data capture templates. If data
capture templates need to include non-ASCII multi-byte field names and need to be used by both
DataDeploy and TeamSite Templating, use UTF-8 encoded data capture templates. For DataDeploy in
non-DAS mode, ensure that your dd.cfg is encoded in UTF-8 if it contains multi-byte column
names.

When entering multi-byte characters (for example, Japanese, Chinese, or Korean) in TeamSite
Templating Java, the client operating system must be operating in the proper locale for correct
character input. For example, the following situations would be acceptable for entering Japanese into
data capture templates:

• Client is Japanese Windows 98, ME, NT or 2000 using the Microsoft IME (MSIME).

• Client is Windows 2000 English version with its default locale set to Japanese (refer to your
Windows manuals for instructions on how to do this).
154 TeamSite Templating Developer’s Guide

Japanese EUC-JP Encoding Support
Japanese EUC-JP Encoding Support

EUC-JP encoding is an additional supported encoding for presentation templates, and the Templating
output engine. Templating can now generate HTML in EUC-JP encoding. Presentation templates can
also be in EUC-JP encoding. Also, templating tags such as <iw_include> that have supported
encoding in previous TeamSite Templating versions now support EUC-JP encoding.

The list of encodings certified for Templating output engine (presentation templates and page
generation engine, and iw_include tags) are:

• CP932 Superset of Shift-JIS. Japanese PC encoding. (CP932 is also known as MS-SJIS.)

• CP936 Superset of GBK. GBK is a superset of GB2312, which is a superset of GB2312-80.
(GB2312 is Simplified Chinese encoding, used in China, Singapore.)

• CP950 Superset of Big5. Traditional Chinese encoding pervasive in Taiwan, Hong Kong.

• CP949 Encodes KSX-1001-1997, a superset of KSC-5601-1992 - Korean National
Standard. (Korean PC encoding.)

• ISO-8859-1 Western European encoding. Also known as Latin 1.

• UTF-8 Multi-octet Unicode. Encodes the Unicode character set.

• EUC-JP Extended Unix Code - Japan. Japanese encoding common on UNIX platforms
such as Solaris 2.x.

To include multi-byte text in presentation templates in one of the above encodings, the encoding
name needs to be specified as listed. For example, if a particular presentation template is encoded in
Shift-JIS encoding, the xml header for this presentation template needs to be:

<?xml version="1.0" encoding="CP932" standalone="no"?>

To customize for page generation of HTML output in particular encodings, refer to
http://iw-home/iw/help/tst/pt/iwpt_encoding.html and http://iw-home/iw/
help/tst/pt/iwpt_compile.html.

There is no restricted binding between encoding of a data capture template, encoding of a
presentation template, and encoding of page generation. Data capture templates can be in one
encoding, while presentation templates be in a different encoding, and HTML output in yet another
encoding. For example, you could have a data capture template created/edited in Shift_JIS. The data
155

Internationalization
content records can then be combined with an UTF-8 encoded presentation template, to generate an
EUC-JP encoded HTML file. The only constraint is that data content records are encoded in UTF-8.

The presentation template embeds HTML with a <META HTTP EQUIV> header such as the
following:

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=UTF-8">

The charset parameter needs to be edited to correspond with the chosen encoding of page
generation. For example, if the default encoding in iwpt_compile.ipl has been changed to
generate pages in Shift-JIS encoding, then the META HTTP EQUIV header inside the presentation
template needs to specify:

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=Shift-JIS">

This charset specification is not necessarily the same as the encoding specification in the xml
header of the presentation template itself. For example, if the presentation template itself needs to be
encoded in EUC-JP, but page generation needs to produce Shift-JIS encoded pages, then the xml
header of the presentation template would specify:

<?xml version="1.0" encoding="EUC-JP" standalone="no"?>

but the META HTTP EQUIV header of HTML inside the presentation template would specify:

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=Shift-JIS">

In this scenario, any Japanese text in the presentation template needs to be in EUC-JP encoding, even
if the text is part of the HTML segments. When page generation takes place (by
iwpt_compile.ipl), all text is then converted to the chosen encoding as specified in
iwpt_encoding.ipl (refer to http://iw-home/iw/help/tst/pt/iwpt_encoding.html
and http://iw-home/iw/help/tst/pt/iwpt_compile.html for more information).
156 TeamSite Templating Developer’s Guide

Localized Java Templating into Japanese, Traditional Chinese, and Simplified Chinese
Localized Java Templating into Japanese, Traditional Chinese,
and Simplified Chinese

A Localized Java Templating interface is available in three languages: Japanese, Traditional Chinese, and
Simplified Chinese. Depending on the localized system in which Templating runs, the corresponding
localized Templating interface is presented. For example, the TeamSite server with TeamSite
Templating runs on an U.S-English system. A Japanese Templating user logs on to the TeamSite server
from a Japanese Windows NT system. When Templating is invoked, all Templating user interfaces
would be presented in Japanese. (However, the TeamSite user interface is still in English.) Similarly, if
a Templating user logs in from a Traditional Chinese OS, the user would get a Traditional Chinese
Templating Client user interface.
157

Internationalization
158 TeamSite Templating Developer’s Guide

Index

A
ACLs

evaluating 130
adding replicants 56
allowed element 52, 60, 79, 102,

106
and element 52, 80, 102, 106
architecture

TeamSite Templating 18
author_submit_dcr.wft 109
available_templates.cfg 108

editing 33
available_templates.ipl 32

B
branch element 103, 105
browser element 51, 78

C
callout button 116
callout CGI program 119
callout element 52, 80
callouts

CGI 116
datacapture.cfg example 112
Java 111

category 23
category element 101, 105
CGI callout
data capture form 116
datacapture.cfg 118
datacapture_callout.ipl 119

cgi-callout element 53, 80
checkbox element 54, 78
CLT

iwdctacleval 130
iwdtd2sym 132, 146
iwgen 133
iwprop 134
iwpt_compile.ipl 135
iwregen 138
iwxml_validate.ipl 139
upgrade_dct.cfg.ipl 141

component directory 25
component template 85

example 87
configuration files

available_templates.cfg 33
available_templates.ipl 32
datacapture.cfg 22, 24

example 45, 72
DataDeploy 109
overview 22
presentation template 25
templating.cfg 22, 27, 32, 97

example 98
content
creating 27
creating records 20

cred element 52, 79, 102, 106

D
data capture callout CGIs 120
data capture form 42

example 70
with callout button 116

data capture subsystem 20, 21
data capture symbol table

creating 132
data capture template

creating from DTDs 145
customizing 41
definition 20
example 42
overview 40

data capture templates
encoding 153

data category 23
making available 101

data content record
creating 27
definition 21, 24
example 68, 70, 87
initiating workflow 33
searching 35
159

data directory 24
data type 23

making available 101
database element 49, 81
datacapture.cfg 22, 24, 27, 40, 45,

145
callout CGI capability 118
example 72

datacapture_callout.ipl 119
data-capture-requirements

element 47
DataDeploy

configuration files 109
integrated with TeamSite

Templating 108
running as a workflow job 107

data-type element 101, 105
debugging tags 135
default element 80
deleting replicants 56
description element 48
directory element 103, 106
directory structure

contents 24
copying 32
overview 23
sample 30

DTD
converting to data capture

templates 145
data capture 76
sample 146
unsupported features 150

E
element

allowed 52, 60, 79, 102, 106
and 52, 80, 102, 106
160
branch 103, 105
browser 51, 78
callout 52, 80
category 101, 105
cgi-callout 53, 80
checkbox 54, 78
cred 52, 79, 102, 106
database 81
data-capture-requirements 47
data-type 101, 105
default 80
description 48
directory 103, 106
inline 54, 64, 82
item 48, 77
java-callout 53, 80, 111
locations 105
not 52, 80, 102, 106
option 54, 79
or 52, 80, 102, 106
presentation 102, 105
radio 55, 79
replicant 56, 79
ruleset 48, 77
select 57, 79
template 102, 105
templating 101, 105
text 58, 77
textarea 59, 78

encoding 153
Japanese 155

evaluating ACLs 130
example templating

environment 30, 31
copying 32
Tea
F
files 45

available_templates.ipl 32
datacapture.cfg 22, 40, 72, 145
datacapture_callout.ipl 119
DTD 76, 146
sample output from

iwdtd2sym CLT 147
templating.cfg 22

G
generated HTML files 20, 28

specifying locations 103

H
hardware requirements 11
HTML pages

from presentation template
compiler 135

generating 28, 133
regenerating 138

I
inline element 54, 64, 82
installation

on Solaris 12
on Windows NT 14

instance
defined 41

integrating 33
interface

controlling 134
item element 48, 77

defined 41
mSite Templating Developer’s Guide

iw.cfg
adding custom menu items 35
changing the templating

directory 34
enabling Java templating 34
specifying search paths 35

iw_xml tags 96
iwdctacleval 130
iwdtd2sym 132, 146
iwgen 133
iwprop 134
iwpt_compile.ipl 135
iwregen 138
iwxml_validate 139

J
Japanese encoding 155
Java callout 111

datacapture.cfg 112
source code 112

java-callout element 53, 80, 111

L
locations element 105

N
not element 52, 80, 102, 106

O
option element 54, 79
or element 52, 80, 102, 106

P
page generation subsystem 20,

21, 29
presentation directory 25
presentation element 102, 105
presentation template 25
compiler 22, 85, 135
definition 21
example 87
guidelines 87
mapping 102

previewing data 103

R
radio element 55, 79
replicant element 56, 79
replicants

adding 56
ruleset element 48, 77

defined 40

S
search menu item 35
search paths 35
select element 57, 79
software requirements 11

T
tags

debugging 135
TeamSite Templating model 18
template

component 85
template element 102, 105
templatedata directory 24

copying to workarea 32
templating directory

changing 34
templating element 101, 105
templating environment

example 31
templating.cfg 22, 27, 32
customizing 97
DTD 105
example 98

text element 58, 77
textarea element 59, 78
type 23

U
upgrade_dct_cfg 141
user interface

setting 34
user preference 134

V
validating XML 139
validation regexes 49, 58

upgrading 12, 141

W
workflow 33

DataDeploy process 108
initiating 108
integrating with TeamSite

Templating 108
preconfigured 109
schematic of 26, 28

X
XML

validating 139
161

162
 Tea
mSite Templating Developer’s Guide

	TeamSite® Templating Developer’s Guide
	Table of Contents
	About This Book
	Manual Organization
	Notation Conventions
	Editing Text on Windows NT Systems
	Notation of iw-home on UNIX and Windows NT Systems
	Notation of iw-home on UNIX and Windows Systems

	TeamSite Templating Installation
	Hardware Requirements
	Operating System Requirements
	Pre-Installation Validation
	Installing on Solaris
	Java Runtime Environment Installation Requirements for TeamSite Templating on Solaris
	Debugging Information for TeamSite Templating Installation on Solaris

	Installing on Windows NT
	Installing on Client Machines
	Memory Requirements for TeamSite Templating Java Clients
	Setting Heap Size
	Multiple Users on a Single Java TeamSite Templating Client

	Next Step

	Initial Configuration
	Configuration Overview
	Concepts and Definitions
	TeamSite Templating Model
	Definitions
	Configuration Files
	Data Storage Hierarchy

	Process Flow: Creating a New Data Content Record
	Process Flow: Generating an Output File
	The Example Directory Structure

	Configuring the Example Templating Environment
	Editing available_templates.cfg to Initiate Workflows
	Modifying the TeamSite iw.cfg File
	Identifying the Templating Directory
	Identifying the Templating Interface
	Removing the Change Templating UI Menu Item
	Adding DCR Search to the View Menu
	Specifying Search Paths

	Providing Content Contributor Interface Access
	Starting TeamSite Templating

	Setting Up Data Capture Templates
	User Interface Overview
	Data Capture Template Overview
	Example Data Capture Templates
	Data Capture Example 1
	Example 1 Data Capture Form
	Example 1 datacapture.cfg File
	Explanation of datacapture.cfg File
	DCT Identifier
	Rule Set
	Description
	Item
	Instance
	Details on Attributes and Subelements of Instances

	Customizing the Appearance of Java Data Capture Forms
	Example 1 Data Content Record

	Data Capture Example 2
	Example 2 Data Capture Form
	Example 2 datacapture.cfg File

	Data Capture Template DTD

	Setting Up Presentation Templates
	Creating Presentation Templates
	Using a Presentation Template—An Example

	Interwoven XML Tags

	Mapping Users, Templates, and Content Records
	templating.cfg Overview
	Example templating.cfg File
	Diagram Key
	Setting Previewing Path Variables

	templating.cfg DTD

	Integrating Templating, DataDeploy, and Workflow
	Integration Overview
	Integration Steps
	TeamSite Templating
	DataDeploy
	TeamSite Workflow

	Using Callouts
	The Java Callout
	The datacapture.cfg File
	Java Source Code

	The CGI Callout
	The Data Capture Form
	The datacapture.cfg.example File
	The example_datacapture_callout.ipl File
	Data Capture Callout CGIs

	Command-Line Tools
	Creating DCTs from DTDs
	Running the CLT on the DTD File
	The datacapture.cfg File
	Diagram Key

	Unsupported DTD Features

	Internationalization
	Limitations
	Japanese EUC-JP Encoding Support
	Localized Java Templating into Japanese, Traditional Chinese, and Simplified Chinese

	Index

